Adversarial Alignment for LLMs Requires Simpler, Reproducible, and More Measurable Objectives
- URL: http://arxiv.org/abs/2502.11910v1
- Date: Mon, 17 Feb 2025 15:28:40 GMT
- Title: Adversarial Alignment for LLMs Requires Simpler, Reproducible, and More Measurable Objectives
- Authors: Leo Schwinn, Yan Scholten, Tom Wollschläger, Sophie Xhonneux, Stephen Casper, Stephan Günnemann, Gauthier Gidel,
- Abstract summary: Misaligned research objectives have hindered progress in adversarial robustness research over the past decade.
We argue that realigned objectives are necessary for meaningful progress in adversarial alignment.
- Score: 52.863024096759816
- License:
- Abstract: Misaligned research objectives have considerably hindered progress in adversarial robustness research over the past decade. For instance, an extensive focus on optimizing target metrics, while neglecting rigorous standardized evaluation, has led researchers to pursue ad-hoc heuristic defenses that were seemingly effective. Yet, most of these were exposed as flawed by subsequent evaluations, ultimately contributing little measurable progress to the field. In this position paper, we illustrate that current research on the robustness of large language models (LLMs) risks repeating past patterns with potentially worsened real-world implications. To address this, we argue that realigned objectives are necessary for meaningful progress in adversarial alignment. To this end, we build on established cybersecurity taxonomy to formally define differences between past and emerging threat models that apply to LLMs. Using this framework, we illustrate that progress requires disentangling adversarial alignment into addressable sub-problems and returning to core academic principles, such as measureability, reproducibility, and comparability. Although the field presents significant challenges, the fresh start on adversarial robustness offers the unique opportunity to build on past experience while avoiding previous mistakes.
Related papers
- Deception in LLMs: Self-Preservation and Autonomous Goals in Large Language Models [0.0]
Recent advances in Large Language Models have incorporated planning and reasoning capabilities.
This has reduced errors in mathematical and logical tasks while improving accuracy.
Our study examines DeepSeek R1, a model trained to output reasoning tokens similar to OpenAI's o1.
arXiv Detail & Related papers (2025-01-27T21:26:37Z) - Tougher Text, Smarter Models: Raising the Bar for Adversarial Defence Benchmarks [18.565448090184]
Our benchmark incorporates a wide range of datasets, evaluates state-of-the-art defence mechanisms, and extends the assessment to include critical tasks.
By establishing a new standard for benchmarking in this domain, we aim to accelerate progress towards more robust and reliable natural language processing systems.
arXiv Detail & Related papers (2025-01-05T20:39:52Z) - Toward Robust RALMs: Revealing the Impact of Imperfect Retrieval on Retrieval-Augmented Language Models [5.10832476049103]
We identify three common scenarios-unanswerable, adversarial, conflicting-where retrieved document sets can confuse RALM with plausible real-world examples.
We propose a new adversarial attack method, Generative model-based ADVersarial attack (GenADV) and a novel metric Robustness under Additional Document (RAD)
Our findings reveal that RALMs often fail to identify the unanswerability or contradiction of a document set, which frequently leads to hallucinations.
arXiv Detail & Related papers (2024-10-19T13:40:33Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - A Survey of Confidence Estimation and Calibration in Large Language Models [86.692994151323]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks in various domains.
Despite their impressive performance, they can be unreliable due to factual errors in their generations.
Assessing their confidence and calibrating them across different tasks can help mitigate risks and enable LLMs to produce better generations.
arXiv Detail & Related papers (2023-11-14T16:43:29Z) - Large Language Models Cannot Self-Correct Reasoning Yet [78.16697476530994]
Large Language Models (LLMs) have emerged as a groundbreaking technology with their unparalleled text generation capabilities.
Concerns persist regarding the accuracy and appropriateness of their generated content.
A contemporary methodology, self-correction, has been proposed as a remedy to these issues.
arXiv Detail & Related papers (2023-10-03T04:56:12Z) - Large Language Model Alignment: A Survey [42.03229317132863]
The potential of large language models (LLMs) is undeniably vast; however, they may yield texts that are imprecise, misleading, or even detrimental.
This survey endeavors to furnish an extensive exploration of alignment methodologies designed for LLMs.
We also probe into salient issues including the models' interpretability, and potential vulnerabilities to adversarial attacks.
arXiv Detail & Related papers (2023-09-26T15:49:23Z) - From Instructions to Intrinsic Human Values -- A Survey of Alignment
Goals for Big Models [48.326660953180145]
We conduct a survey of different alignment goals in existing work and trace their evolution paths to help identify the most essential goal.
Our analysis reveals a goal transformation from fundamental abilities to value orientation, indicating the potential of intrinsic human values as the alignment goal for enhanced LLMs.
arXiv Detail & Related papers (2023-08-23T09:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.