Selective Task Group Updates for Multi-Task Optimization
- URL: http://arxiv.org/abs/2502.11986v1
- Date: Mon, 17 Feb 2025 16:26:05 GMT
- Title: Selective Task Group Updates for Multi-Task Optimization
- Authors: Wooseong Jeong, Kuk-Jin Yoon,
- Abstract summary: We introduce an algorithm that adaptively determines how to effectively group tasks and update them during the learning process.
Our methods substantially outperform previous multi-task optimization approaches.
- Score: 44.601029688423914
- License:
- Abstract: Multi-task learning enables the acquisition of task-generic knowledge by training multiple tasks within a unified architecture. However, training all tasks together in a single architecture can lead to performance degradation, known as negative transfer, which is a main concern in multi-task learning. Previous works have addressed this issue by optimizing the multi-task network through gradient manipulation or weighted loss adjustments. However, their optimization strategy focuses on addressing task imbalance in shared parameters, neglecting the learning of task-specific parameters. As a result, they show limitations in mitigating negative transfer, since the learning of shared space and task-specific information influences each other during optimization. To address this, we propose a different approach to enhance multi-task performance by selectively grouping tasks and updating them for each batch during optimization. We introduce an algorithm that adaptively determines how to effectively group tasks and update them during the learning process. To track inter-task relations and optimize multi-task networks simultaneously, we propose proximal inter-task affinity, which can be measured during the optimization process. We provide a theoretical analysis on how dividing tasks into multiple groups and updating them sequentially significantly affects multi-task performance by enhancing the learning of task-specific parameters. Our methods substantially outperform previous multi-task optimization approaches and are scalable to different architectures and various numbers of tasks.
Related papers
- No More Tuning: Prioritized Multi-Task Learning with Lagrangian Differential Multiplier Methods [10.725249826517734]
In web search, relevance is often prioritized over other metrics, such as click-through rates or user engagement.
Existing frameworks pay insufficient attention to the prioritization among different tasks.
We introduce a novel multi-task learning framework employing Lagrangian Differential Multiplier Methods for step-wise multi-task optimization.
arXiv Detail & Related papers (2024-12-16T18:58:28Z) - Quantifying Task Priority for Multi-Task Optimization [44.601029688423914]
The goal of multi-task learning is to learn diverse tasks within a single unified network.
We present a new method named connection strength-based optimization for multi-task learning.
arXiv Detail & Related papers (2024-06-05T06:52:29Z) - Cross-Task Affinity Learning for Multitask Dense Scene Predictions [5.939164722752263]
Multitask learning (MTL) has become prominent for its ability to predict multiple tasks jointly.
We introduce the Cross-Task Affinity Learning (CTAL) module, a lightweight framework that enhances task refinement in multitask networks.
Our results demonstrate state-of-the-art MTL performance for both CNN and transformer backbones, using significantly fewer parameters than single-task learning.
arXiv Detail & Related papers (2024-01-20T05:31:47Z) - Leveraging convergence behavior to balance conflicting tasks in
multi-task learning [3.6212652499950138]
Multi-Task Learning uses correlated tasks to improve performance generalization.
Tasks often conflict with each other, which makes it challenging to define how the gradients of multiple tasks should be combined.
We propose a method that takes into account temporal behaviour of the gradients to create a dynamic bias that adjust the importance of each task during the backpropagation.
arXiv Detail & Related papers (2022-04-14T01:52:34Z) - In Defense of the Unitary Scalarization for Deep Multi-Task Learning [121.76421174107463]
We present a theoretical analysis suggesting that many specialized multi-tasks can be interpreted as forms of regularization.
We show that, when coupled with standard regularization and stabilization techniques, unitary scalarization matches or improves upon the performance of complex multitasks.
arXiv Detail & Related papers (2022-01-11T18:44:17Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
Multi-task learning aims to explore task relatedness to improve individual tasks.
We propose variational multi-task learning (VMTL), a general probabilistic inference framework for learning multiple related tasks.
arXiv Detail & Related papers (2021-11-09T18:49:45Z) - Efficiently Identifying Task Groupings for Multi-Task Learning [55.80489920205404]
Multi-task learning can leverage information learned by one task to benefit the training of other tasks.
We suggest an approach to select which tasks should train together in multi-task learning models.
Our method determines task groupings in a single training run by co-training all tasks together and quantifying the effect to which one task's gradient would affect another task's loss.
arXiv Detail & Related papers (2021-09-10T02:01:43Z) - Small Towers Make Big Differences [59.243296878666285]
Multi-task learning aims at solving multiple machine learning tasks at the same time.
A good solution to a multi-task learning problem should be generalizable in addition to being Pareto optimal.
We propose a method of under- parameterized self-auxiliaries for multi-task models to achieve the best of both worlds.
arXiv Detail & Related papers (2020-08-13T10:45:31Z) - Multi-Task Reinforcement Learning with Soft Modularization [25.724764855681137]
Multi-task learning is a very challenging problem in reinforcement learning.
We introduce an explicit modularization technique on policy representation to alleviate this optimization issue.
We show our method improves both sample efficiency and performance over strong baselines by a large margin.
arXiv Detail & Related papers (2020-03-30T17:47:04Z) - Gradient Surgery for Multi-Task Learning [119.675492088251]
Multi-task learning has emerged as a promising approach for sharing structure across multiple tasks.
The reasons why multi-task learning is so challenging compared to single-task learning are not fully understood.
We propose a form of gradient surgery that projects a task's gradient onto the normal plane of the gradient of any other task that has a conflicting gradient.
arXiv Detail & Related papers (2020-01-19T06:33:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.