論文の概要: Classifying the Stoichiometry of Virus-like Particles with Interpretable Machine Learning
- arxiv url: http://arxiv.org/abs/2502.12049v1
- Date: Mon, 17 Feb 2025 17:16:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:08:18.449273
- Title: Classifying the Stoichiometry of Virus-like Particles with Interpretable Machine Learning
- Title(参考訳): 解釈可能な機械学習によるウイルス様粒子の確率計測の分類
- Authors: Jiayang Zhang, Xianyuan Liu, Wei Wu, Sina Tabakhi, Wenrui Fan, Shuo Zhou, Kang Lan Tee, Tuck Seng Wong, Haiping Lu,
- Abstract要約: 本稿では,タンパク質の化学量論クラスを分類するための解釈可能なデータ駆動パイプラインを提案する。
また、機能符号化がモデルの性能と解釈可能性に与える影響についても検討する。
本研究のパイプライン評価は, タンパク質の特徴を明らかにしながら, 便秘を分類できることを実証した。
- 参考スコア(独自算出の注目度): 7.678637069903192
- License:
- Abstract: Virus-like particles (VLPs) are valuable for vaccine development due to their immune-triggering properties. Understanding their stoichiometry, the number of protein subunits to form a VLP, is critical for vaccine optimisation. However, current experimental methods to determine stoichiometry are time-consuming and require highly purified proteins. To efficiently classify stoichiometry classes in proteins, we curate a new dataset and propose an interpretable, data-driven pipeline leveraging linear machine learning models. We also explore the impact of feature encoding on model performance and interpretability, as well as methods to identify key protein sequence features influencing classification. The evaluation of our pipeline demonstrates that it can classify stoichiometry while revealing protein features that possibly influence VLP assembly. The data and code used in this work are publicly available at https://github.com/Shef-AIRE/StoicIML.
- Abstract(参考訳): ウイルス様粒子(VLP)は、その免疫学的性質からワクチン開発に有用である。
VLPを形成するタンパク質サブユニットの数が、その化学量論を理解することは、ワクチンの最適化に不可欠である。
しかし、現在のストーチノメトリを決定するための実験的手法は時間を要するため、高度に精製されたタンパク質を必要とする。
タンパク質の統計的クラスを効率的に分類するために、新しいデータセットをキュレートし、線形機械学習モデルを利用した解釈可能なデータ駆動パイプラインを提案する。
また,特徴エンコーディングがモデルの性能と解釈可能性に与える影響,および重要なタンパク質配列の特徴が分類に与える影響を同定する方法についても検討する。
このパイプラインの評価は,VLPの組立に影響を及ぼす可能性のあるタンパク質の特徴を明らかにしながら,ストーチノメトリーを分類できることを実証する。
この作業で使用されるデータとコードはhttps://github.com/Shef-AIRE/StoicIMLで公開されている。
関連論文リスト
- Metalic: Meta-Learning In-Context with Protein Language Models [5.868595531658237]
このような予測タスクの有望なテクニックとして機械学習が登場した。
データ不足のため、私たちはメタラーニングがタンパク質工学の進歩に重要な役割を果たすと信じています。
論文 参考訳(メタデータ) (2024-10-10T20:19:35Z) - NaNa and MiGu: Semantic Data Augmentation Techniques to Enhance Protein Classification in Graph Neural Networks [60.48306899271866]
本稿では,背骨化学および側鎖生物物理情報をタンパク質分類タスクに組み込む新しい意味データ拡張手法を提案する。
具体的には, 分子生物学的, 二次構造, 化学結合, およびタンパク質のイオン特性を活用し, 分類作業を容易にする。
論文 参考訳(メタデータ) (2024-03-21T13:27:57Z) - Extracting Protein-Protein Interactions (PPIs) from Biomedical
Literature using Attention-based Relational Context Information [5.456047952635665]
本研究は,二元的相互作用型ラベルを付加したベット型相互作用定義を用いた多元的PPIコーパスを提案する。
変換器を用いた深層学習手法は,関係表現のための関係文脈情報を利用して関係分類性能を向上させる。
このモデルの性能は, 広く研究されている4つのバイオメディカル関係抽出データセットで評価される。
論文 参考訳(メタデータ) (2024-03-08T01:43:21Z) - MAPE-PPI: Towards Effective and Efficient Protein-Protein Interaction
Prediction via Microenvironment-Aware Protein Embedding [82.31506767274841]
タンパク質-プロテイン相互作用(PPI)は、様々な生物学的過程において基本的であり、生命活動において重要な役割を果たしている。
MPAE-PPIは、十分に大きな「語彙」を介して、マイクロ環境を化学的に意味のある離散コードに符号化する
MPAE-PPIは、数百万のPPIでPPI予測にスケールでき、有効性と計算効率のトレードオフが優れている。
論文 参考訳(メタデータ) (2024-02-22T09:04:41Z) - DeepGATGO: A Hierarchical Pretraining-Based Graph-Attention Model for
Automatic Protein Function Prediction [4.608328575930055]
自動タンパク質機能予測(AFP)は大規模多ラベル分類問題に分類される。
現在、一般的な手法は主にタンパク質関連情報と遺伝子オントロジー(GO)の用語を組み合わせて、最終的な機能予測を生成する。
本稿では,タンパク質配列とGO項ラベルを階層的に処理するシークエンスベースの階層予測手法であるDeepGATGOを提案する。
論文 参考訳(メタデータ) (2023-07-24T07:01:32Z) - Reprogramming Pretrained Language Models for Protein Sequence
Representation Learning [68.75392232599654]
エンドツーエンドの表現学習フレームワークである辞書学習(R2DL)による表現学習を提案する。
R2DLは、タンパク質配列の埋め込みを学ぶために、事前訓練された英語モデルを再プログラムする。
我々のモデルは,事前訓練および標準教師付き手法によって設定されたベースラインに対して,最大105ドルの精度でデータ効率を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-01-05T15:55:18Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - Protein Representation Learning by Geometric Structure Pretraining [27.723095456631906]
既存のアプローチは通常、多くの未ラベルアミノ酸配列で事前訓練されたタンパク質言語モデルである。
まず,タンパク質の幾何学的特徴を学習するための単純かつ効果的なエンコーダを提案する。
関数予測と折り畳み分類の両タスクの実験結果から,提案した事前学習法は,より少ないデータを用いた最先端のシーケンスベース手法と同等あるいは同等であることがわかった。
論文 参考訳(メタデータ) (2022-03-11T17:52:13Z) - Pre-training Co-evolutionary Protein Representation via A Pairwise
Masked Language Model [93.9943278892735]
タンパク質配列表現学習の鍵となる問題は、配列中の残基間の共変量によって反映される共進化情報をキャプチャすることである。
Pairwise Masked Language Model (PMLM) と呼ばれる専用言語モデルによる事前学習により,この情報を直接キャプチャする新しい手法を提案する。
提案手法は, 相互関係を効果的に把握し, ベースラインと比較して, 接触予測性能を最大9%向上できることを示す。
論文 参考訳(メタデータ) (2021-10-29T04:01:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。