論文の概要: APB: Accelerating Distributed Long-Context Inference by Passing Compressed Context Blocks across GPUs
- arxiv url: http://arxiv.org/abs/2502.12085v1
- Date: Mon, 17 Feb 2025 17:59:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:15:21.760277
- Title: APB: Accelerating Distributed Long-Context Inference by Passing Compressed Context Blocks across GPUs
- Title(参考訳): APB: 圧縮されたコンテキストブロックをGPUに渡すことで、分散ロングコンテキスト推論を高速化する
- Authors: Yuxiang Huang, Mingye Li, Xu Han, Chaojun Xiao, Weilin Zhao, Sun Ao, Hao Zhou, Jie Zhou, Zhiyuan Liu, Maosong Sun,
- Abstract要約: 我々は、効率的な長文推論フレームワークであるAPBを紹介する。
APBはプリフィル速度を高めるためにマルチホスト近似アテンションを使用する。
APBはFlashAttn、RingAttn、StarAttnと比較して最大9.2x、4.2x、1.6xの速度を実現している。
- 参考スコア(独自算出の注目度): 81.5049387116454
- License:
- Abstract: While long-context inference is crucial for advancing large language model (LLM) applications, its prefill speed remains a significant bottleneck. Current approaches, including sequence parallelism strategies and compute reduction through approximate attention mechanisms, still fall short of delivering optimal inference efficiency. This hinders scaling the inputs to longer sequences and processing long-context queries in a timely manner. To address this, we introduce APB, an efficient long-context inference framework that leverages multi-host approximate attention to enhance prefill speed by reducing compute and enhancing parallelism simultaneously. APB introduces a communication mechanism for essential key-value pairs within a sequence parallelism framework, enabling a faster inference speed while maintaining task performance. We implement APB by incorporating a tailored FlashAttn kernel alongside optimized distribution strategies, supporting diverse models and parallelism configurations. APB achieves speedups of up to 9.2x, 4.2x, and 1.6x compared with FlashAttn, RingAttn, and StarAttn, respectively, without any observable task performance degradation. We provide the implementation and experiment code of APB in https://github.com/thunlp/APB.
- Abstract(参考訳): 長文推論は大規模言語モデル(LLM)アプリケーションを進化させる上で重要であるが、そのプリフィル速度は依然として重大なボトルネックである。
シーケンス並列化戦略や近似アテンション機構による計算削減など,現在のアプローチでは,最適な推論効率を実現するには至っていない。
これにより、入力を長いシーケンスにスケーリングし、タイムリーにロングコンテキストクエリを処理するのを妨げます。
これを解決するために,マルチホスト近似注意を利用して計算の削減と並列性の向上を同時に行う,効率的な長文推論フレームワークであるAPBを導入する。
APBはシーケンス並列化フレームワーク内で重要なキー-値ペアの通信機構を導入し、タスク性能を維持しながら高速な推論速度を実現する。
我々は、最適化された分散戦略と並行して、調整済みのFlashAttnカーネルを組み込むことでAPBを実装し、多様なモデルと並列化構成をサポートする。
APBは、FlashAttn、RingAttn、StarAttnと比較して最大9.2x、4.2x、1.6xのスピードアップを実現している。
我々は https://github.com/thunlp/APB で APB の実装と試験コードを提供します。
関連論文リスト
- ExpertFlow: Optimized Expert Activation and Token Allocation for Efficient Mixture-of-Experts Inference [41.41316718220569]
ExpertFlowは、柔軟なルーティングを調整し、CPUとGPU間の効率的な専門家スケジューリングを可能にすることで、推論効率を向上させるように設計されている。
実験により、ExpertFlowは最大93.72%のGPUメモリを節約し、ベースライン法に比べて推論速度を2~10倍に向上することを示した。
論文 参考訳(メタデータ) (2024-10-23T15:24:54Z) - PipeInfer: Accelerating LLM Inference using Asynchronous Pipelined Speculation [9.080650575731152]
PipeInferは、パイプライン化された投機的アクセラレーション技術で、トークン間のレイテンシを低減し、単一要求シナリオにおけるシステム利用を改善する。
PipeInferは、標準的な投機的推論よりも生成速度が2.15$times$改善されている。
論文 参考訳(メタデータ) (2024-07-16T14:52:02Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - BurstAttention: An Efficient Distributed Attention Framework for Extremely Long Sequences [96.74779792715819]
本稿では,BurstAttention'という分散アテンションフレームワークを提案し,メモリアクセスと通信操作を最適化する。
異なる長さ設定下での実験結果は、BurstAttentionが長いシーケンスを処理する上で大きな利点があることを示している。
論文 参考訳(メタデータ) (2024-03-14T12:51:58Z) - Bifurcated Attention: Accelerating Massively Parallel Decoding with Shared Prefixes in LLMs [39.16152482491236]
Bifurcated attentionは、共有コンテキストバッチデコードシナリオにおける言語モデル推論を強化するために設計された手法である。
提案手法は,高バッチサイズおよび拡張コンテキスト長のレイテンシに寄与する重要な要因である冗長メモリIOコストの課題に対処する。
論文 参考訳(メタデータ) (2024-03-13T16:30:57Z) - StreamFlow: Streamlined Multi-Frame Optical Flow Estimation for Video
Sequences [31.210626775505407]
連続するフレーム間のオクルージョンは、長い間、光学的フロー推定において重要な課題を提起してきた。
本稿では,ビデオ入力に適したストリーム・イン・バッチ・マルチフレーム(SIM)パイプラインを提案する。
StreamFlowは、挑戦的なKITTIとSintelデータセットのパフォーマンスだけでなく、排他的領域でも特に改善されている。
論文 参考訳(メタデータ) (2023-11-28T07:53:51Z) - Parallel Actors and Learners: A Framework for Generating Scalable RL
Implementations [14.432131909590824]
強化学習(Reinforcement Learning, RL)は、ロボット工学、ゲーム、医療などの応用分野において大きな成功を収めている。
現在の実装は、不規則なメモリアクセスや同期オーバーヘッドといった問題により、パフォーマンスが劣っている。
マルチコアシステム上でスケーラブルな強化学習を実現するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-03T21:00:53Z) - Improved Branch and Bound for Neural Network Verification via Lagrangian
Decomposition [161.09660864941603]
ニューラルネットワークの入出力特性を公式に証明するためのブランチとバウンド(BaB)アルゴリズムのスケーラビリティを改善します。
活性化に基づく新しい分岐戦略とBaBフレームワークであるブランチとデュアルネットワーク境界(BaDNB)を提案する。
BaDNBは、従来の完全検証システムを大きなマージンで上回り、対数特性で平均検証時間を最大50倍に削減した。
論文 参考訳(メタデータ) (2021-04-14T09:22:42Z) - Fast and Complete: Enabling Complete Neural Network Verification with
Rapid and Massively Parallel Incomplete Verifiers [112.23981192818721]
BaB プロセス中に線形計画法 (LP) を置き換えるために, 逆モード線形緩和に基づく解析法 (LiRPA) を提案する。
LPとは異なり、LiRPAを適用すると、より弱い境界が得られ、分割時にサブドメインのコンフリクトをチェックすることもできない。
既存のLPベースのアプローチと比較して、桁違いのスピードアップを示す。
論文 参考訳(メタデータ) (2020-11-27T16:42:12Z) - Stochastic Optimization with Laggard Data Pipelines [65.20044914532221]
共通最適化手法の「データ抽出」拡張は同期手法よりも優れた性能を示すことを示す。
具体的には、ミニバッチによる凸最適化において、データエコーは、最適統計率を維持しながら収束率の曲率に支配される部分の高速化をもたらすことを示す。
論文 参考訳(メタデータ) (2020-10-26T14:55:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。