A Monocular Event-Camera Motion Capture System
- URL: http://arxiv.org/abs/2502.12113v1
- Date: Mon, 17 Feb 2025 18:38:27 GMT
- Title: A Monocular Event-Camera Motion Capture System
- Authors: Leonard Bauersfeld, Davide Scaramuzza,
- Abstract summary: We describe a monocular event-camera motion capture system which overcomes this limitation and is ideally suited for narrow spaces.
Instead of passive markers it relies on active, blinking LED markers such that each marker can be uniquely identified from the orientation frequency.
The developed system has millimeter accuracy, millisecond latency and we demonstrate that its state estimate can be used to fly a small, agile quadrotor.
- Score: 22.30914818152441
- License:
- Abstract: Motion capture systems are a widespread tool in research to record ground-truth poses of objects. Commercial systems use reflective markers attached to the object and then triangulate pose of the object from multiple camera views. Consequently, the object must be visible to multiple cameras which makes such multi-view motion capture systems unsuited for deployments in narrow, confined spaces (e.g. ballast tanks of ships). In this technical report we describe a monocular event-camera motion capture system which overcomes this limitation and is ideally suited for narrow spaces. Instead of passive markers it relies on active, blinking LED markers such that each marker can be uniquely identified from the blinking frequency. The markers are placed at known locations on the tracking object. We then solve the PnP (perspective-n-points) problem to obtain the position and orientation of the object. The developed system has millimeter accuracy, millisecond latency and we demonstrate that its state estimate can be used to fly a small, agile quadrotor.
Related papers
- SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOT is an event-based multi-object tracker.
SpikeMOT uses spiking neural networks to extract sparsetemporal features from event streams associated with objects.
arXiv Detail & Related papers (2023-09-29T05:13:43Z) - Delving into Motion-Aware Matching for Monocular 3D Object Tracking [81.68608983602581]
We find that the motion cue of objects along different time frames is critical in 3D multi-object tracking.
We propose MoMA-M3T, a framework that mainly consists of three motion-aware components.
We conduct extensive experiments on the nuScenes and KITTI datasets to demonstrate our MoMA-M3T achieves competitive performance against state-of-the-art methods.
arXiv Detail & Related papers (2023-08-22T17:53:58Z) - TrajectoryFormer: 3D Object Tracking Transformer with Predictive
Trajectory Hypotheses [51.60422927416087]
3D multi-object tracking (MOT) is vital for many applications including autonomous driving vehicles and service robots.
We present TrajectoryFormer, a novel point-cloud-based 3D MOT framework.
arXiv Detail & Related papers (2023-06-09T13:31:50Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
We propose to model Dynamic Objects in RecurrenT (DORT) to tackle this problem.
DORT extracts object-wise local volumes for motion estimation that also alleviates the heavy computational burden.
It is flexible and practical that can be plugged into most camera-based 3D object detectors.
arXiv Detail & Related papers (2023-03-29T12:33:55Z) - Autonomous Marker-less Rapid Aerial Grasping [5.892028494793913]
We propose a vision-based system for autonomous rapid aerial grasping.
We generate a dense point cloud of the detected objects and perform geometry-based grasp planning.
We show the first use of geometry-based grasping techniques with a flying platform.
arXiv Detail & Related papers (2022-11-23T16:25:49Z) - TripletTrack: 3D Object Tracking using Triplet Embeddings and LSTM [0.0]
3D object tracking is a critical task in autonomous driving systems.
In this paper we investigate the use of triplet embeddings in combination with motion representations for 3D object tracking.
arXiv Detail & Related papers (2022-10-28T15:23:50Z) - Learning to Track Object Position through Occlusion [32.458623495840904]
Occlusion is one of the most significant challenges encountered by object detectors and trackers.
We propose a tracking-by-detection approach that builds upon the success of region based video object detectors.
Our approach achieves superior results on a dataset of furniture assembly videos collected from the internet.
arXiv Detail & Related papers (2021-06-20T22:29:46Z) - EagerMOT: 3D Multi-Object Tracking via Sensor Fusion [68.8204255655161]
Multi-object tracking (MOT) enables mobile robots to perform well-informed motion planning and navigation by localizing surrounding objects in 3D space and time.
Existing methods rely on depth sensors (e.g., LiDAR) to detect and track targets in 3D space, but only up to a limited sensing range due to the sparsity of the signal.
We propose EagerMOT, a simple tracking formulation that integrates all available object observations from both sensor modalities to obtain a well-informed interpretation of the scene dynamics.
arXiv Detail & Related papers (2021-04-29T22:30:29Z) - Simultaneous Multi-View Camera Pose Estimation and Object Tracking with
Square Planar Markers [0.0]
This work proposes a novel method to simultaneously solve the above-mentioned problems.
From a video sequence showing a rigid set of planar markers recorded from multiple cameras, the proposed method is able to automatically obtain the three-dimensional configuration of the markers.
Once the parameters are obtained, tracking of the object can be done in real time with a low computational cost.
arXiv Detail & Related papers (2021-03-16T15:33:58Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.