Scaling Test-Time Compute Without Verification or RL is Suboptimal
- URL: http://arxiv.org/abs/2502.12118v2
- Date: Tue, 18 Feb 2025 18:54:12 GMT
- Title: Scaling Test-Time Compute Without Verification or RL is Suboptimal
- Authors: Amrith Setlur, Nived Rajaraman, Sergey Levine, Aviral Kumar,
- Abstract summary: We show that finetuning LLMs with verifier-based (VB) methods based on RL or search is far superior to verifier-free (VF) approaches based on distilling or cloning search traces, given a fixed amount of compute/data budget.<n>We corroborate our theory empirically on both didactic and math reasoning problems with 3/8B-sized pre-trained LLMs, where we find verification is crucial for scaling test-time compute.
- Score: 70.28430200655919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite substantial advances in scaling test-time compute, an ongoing debate in the community is how it should be scaled up to enable continued and efficient improvements with scaling. There are largely two approaches: first, distilling successful search or thinking traces; and second, using verification (e.g., 0/1 outcome rewards, reward models, or verifiers) to guide reinforcement learning (RL) and search algorithms. In this paper, we prove that finetuning LLMs with verifier-based (VB) methods based on RL or search is far superior to verifier-free (VF) approaches based on distilling or cloning search traces, given a fixed amount of compute/data budget. Further, we show that as we scale test-time compute (measured as the output token length) and training data, suboptimality of VF methods scales poorly compared to VB when the base pre-trained LLM presents a heterogeneous distribution over correct solution traces (e.g., different lengths, styles, etc.) and admits a non-sharp distribution over rewards on traces sampled from it. We formalize this condition using anti-concentration [Erd\H{o}s, 1945]. This implies a stronger result that VB methods scale better asymptotically, with the performance gap between VB and VF methods widening as test-time budget grows. We corroborate our theory empirically on both didactic and math reasoning problems with 3/8/32B-sized pre-trained LLMs, where we find verification is crucial for scaling test-time compute.
Related papers
- Optimizing Test-Time Compute via Meta Reinforcement Fine-Tuning [60.67176246634741]
We formalize the problem of optimizing test-time compute as a meta-reinforcement learning (RL) problem.
We show that state-of-the-art models do not minimize regret, but one can do so by maximizing a dense reward bonus in conjunction with the outcome 0/1 reward RL.
arXiv Detail & Related papers (2025-03-10T17:40:43Z) - S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.
Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - Rethinking Fine-Tuning when Scaling Test-Time Compute: Limiting Confidence Improves Mathematical Reasoning [32.45574194957491]
We show that training with cross-entropy loss can be misaligned with pass@N in that pass@N accuracy $it decreases$ with longer training.<n>We suggest a principled, modified training loss that is better aligned to pass@N by limiting model confidence and rescuing pass@N test performance.
arXiv Detail & Related papers (2025-02-11T00:33:31Z) - The Journey Matters: Average Parameter Count over Pre-training Unifies Sparse and Dense Scaling Laws [51.608402959163925]
We present the first systematic exploration of optimal sparse pre-training configurations for large language models.<n>We find that initiating pruning at 25% of total training compute and concluding at 75% achieves near-optimal final evaluation loss.<n>We propose a new scaling law that modifies the Chinchilla scaling law to use the average parameter count over pre-training.
arXiv Detail & Related papers (2025-01-21T20:23:22Z) - Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling [52.34735382627312]
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.<n>Existing approaches mainly rely on imitation learning and struggle to achieve effective test-time scaling.<n>We present T1 to scale reinforcement learning by encouraging exploration and understand inference scaling.
arXiv Detail & Related papers (2025-01-20T18:33:33Z) - A Bayesian Approach to Data Point Selection [24.98069363998565]
Data point selection (DPS) is becoming a critical topic in deep learning.
Existing approaches to DPS are predominantly based on a bi-level optimisation (BLO) formulation.
We propose a novel Bayesian approach to DPS.
arXiv Detail & Related papers (2024-11-06T09:04:13Z) - Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters [27.656263126925815]
We study the scaling of inference-time computation in LLMs.
We find that in both cases, the effectiveness of different approaches to scaling test-time compute critically varies depending on the difficulty of the prompt.
arXiv Detail & Related papers (2024-08-06T17:35:05Z) - Efficient Discrepancy Testing for Learning with Distribution Shift [17.472049019016524]
We provide the first set of provably efficient algorithms for testing localized discrepancy distance.
Results imply a broad set of new, efficient learning algorithms in the recently introduced model of Testable Learning with Distribution Shift.
arXiv Detail & Related papers (2024-06-13T17:51:10Z) - Improve Mathematical Reasoning in Language Models by Automated Process Supervision [23.807288360423193]
We propose a novel divide-and-conquer style Monte Carlo Tree Search (MCTS) algorithm named textitOmegaPRM for the efficient collection of high-quality process supervision data.<n>We are able to collect over 1.5 million process supervision annotations to train Process Reward Models (PRMs)<n>This fully automated process supervision alongside the weighted self-consistency algorithm is able to enhance LLMs' math reasoning performances.
arXiv Detail & Related papers (2024-06-05T19:25:40Z) - Self-Evaluation Guided Beam Search for Reasoning [61.523627290397556]
We introduce a stepwise self-evaluation mechanism to guide and calibrate the reasoning process of Large Language Model (LLM)
We propose a decoding algorithm integrating the self-evaluation guidance via beam search.
Our approach surpasses the corresponding Codex-backboned baselines in few-shot accuracy by $6.34%$, $9.56%$, and $5.46%$ on the GSM8K, AQuA, and StrategyQA.
arXiv Detail & Related papers (2023-05-01T02:37:59Z) - You Only Need End-to-End Training for Long-Tailed Recognition [8.789819609485225]
Cross-entropy loss tends to produce highly correlated features on imbalanced data.
We propose two novel modules, Block-based Relatively Balanced Batch Sampler (B3RS) and Batch Embedded Training (BET)
Experimental results on the long-tailed classification benchmarks, CIFAR-LT and ImageNet-LT, demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2021-12-11T11:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.