論文の概要: Causal Interpretations in Observational Studies: The Role of Sociocultural Backgrounds and Team Dynamics
- arxiv url: http://arxiv.org/abs/2502.12159v1
- Date: Tue, 04 Feb 2025 02:00:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 03:56:12.483751
- Title: Causal Interpretations in Observational Studies: The Role of Sociocultural Backgrounds and Team Dynamics
- Title(参考訳): 観察研究における因果解釈:社会文化的背景とチームダイナミクスの役割
- Authors: Jun Wang, Bei Yu,
- Abstract要約: 計算言語学的および回帰的手法を用いて,80,000以上の観察的研究を解析した。
その結果,未経験者や研究チーム,男性最後の著者,不確実性回避指標の高い国出身の著者が,因果語の使用頻度が高いことがわかった。
これらのことから, 因果語の使用は, 著者の社会文化的背景や研究協力のダイナミクスといった外部要因に影響されている可能性が示唆された。
- 参考スコア(独自算出の注目度): 10.71018453873532
- License:
- Abstract: The prevalence of drawing causal conclusions from observational studies has raised concerns about potential exaggeration in science communication. While some believe causal language should only apply to randomized controlled trials, others argue that rigorous methods can justify causal claims in observational studies. Ideally, causal language should align with the strength of the evidence. However, through the analysis of over 80,000 observational study abstracts using computational linguistic and regression methods, we found that causal language is more frequently used by less experienced authors, smaller research teams, male last authors, and authors from countries with higher uncertainty avoidance indices. These findings suggest that the use of causal language may be influenced by external factors such as the sociocultural backgrounds of authors and the dynamics of research collaboration. This newly identified link deepens our understanding of how such factors help shape scientific conclusions in causal inference and science communication.
- Abstract(参考訳): 観測研究から因果関係の結論が導かれる傾向は、科学コミュニケーションにおける潜在的な誇張に関する懸念を提起している。
因果語はランダム化比較試験にのみ適用されるべきと考える者もいるが、厳密な手法は観察研究における因果的主張を正当化できると主張する者もいる。
理想的には、因果語は証拠の強さと一致すべきである。
しかし, 計算言語学的および回帰的手法を用いて80,000以上の観察研究を要約して分析した結果, 因果語はより経験の浅い著者, より少ない研究チーム, 男性最後の著者, 高い不確実性回避指標を持つ国からの著者によって多く用いられていることがわかった。
これらのことから, 因果語の使用は, 著者の社会文化的背景や研究協力のダイナミクスといった外部要因に影響されている可能性が示唆された。
この新たなリンクは、因果推論と科学コミュニケーションにおける科学的結論の形成にどのように役立つか、私たちの理解を深めます。
関連論文リスト
- Hypothesizing Missing Causal Variables with LLMs [55.28678224020973]
我々は、入力が欠落変数を持つ部分因果グラフであるような新しいタスクを定式化し、出力は部分グラフを完成させるための欠落変数に関する仮説である。
原因と効果の間の媒介変数を仮説化するLLMの強い能力を示す。
また,オープンソースモデルの一部がGPT-4モデルより優れているという驚くべき結果も得られた。
論文 参考訳(メタデータ) (2024-09-04T10:37:44Z) - Exploring Reasoning Biases in Large Language Models Through Syllogism: Insights from the NeuBAROCO Dataset [5.695579108997392]
本稿では,現在の大規模言語モデルが自然言語の論理的推論をどの程度正確に行うか,という問題について考察する。
我々は,英語と日本語のシロジズム推論問題からなるNeuBAROCOというシロジズムデータセットを提案する。
大きな言語モデルを用いた我々の実験は、これらのモデルが、他のエラー傾向とともに、人間に類似した推論バイアスを示すことを示している。
論文 参考訳(メタデータ) (2024-08-08T12:10:50Z) - Large Language Models as Co-Pilots for Causal Inference in Medical Studies [0.0]
本研究では,大規模言語モデル(LLM)を共同パイロットツールとして活用し,因果推論の有効性を損なう研究設計上の欠陥の同定を支援する。
本研究では,LLMの概念的枠組みを,様々な分野のドメイン知識を符号化する因果コパイロットとして提案する。
論文 参考訳(メタデータ) (2024-07-26T22:43:15Z) - A Systematic Analysis of Large Language Models as Soft Reasoners: The Case of Syllogistic Inferences [5.141416267381492]
我々は、論理学と認知心理学において広範囲に研究されている誘因的推論の領域であるシロメトリクス推論の事例を考察する。
思考の連鎖的推論,文脈内学習,教師付き微調整がシロメトリクス的推論に及ぼす影響について検討した。
以上の結果から,事前学習したLSMの行動は認知科学によって説明できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-17T08:59:04Z) - Smoke and Mirrors in Causal Downstream Tasks [59.90654397037007]
本稿では, 治療効果推定の因果推論タスクについて検討し, 高次元観察において利害関係が記録されている。
最先端の視覚バックボーンから微調整した6つの480モデルを比較し、サンプリングとモデリングの選択が因果推定の精度に大きく影響することを発見した。
以上の結果から,今後のベンチマークでは,下流の科学的問題,特に因果的な問題について慎重に検討すべきであることが示唆された。
論文 参考訳(メタデータ) (2024-05-27T13:26:34Z) - CausalGym: Benchmarking causal interpretability methods on linguistic
tasks [52.61917615039112]
CausalGymを使って、モデル動作に因果的に影響を及ぼす解釈可能性手法のベンチマークを行う。
ピチアモデル (14M--6.9B) について検討し, 幅広い解釈可能性手法の因果効果について検討した。
DASは他の手法よりも優れており、2つの困難な言語現象の学習軌跡の研究に利用している。
論文 参考訳(メタデータ) (2024-02-19T21:35:56Z) - Understanding Fine-grained Distortions in Reports of Scientific Findings [46.96512578511154]
歪んだ科学コミュニケーションは、不健康な行動の変化を招き、科学機関の信頼を低下させる可能性があるため、個人や社会に害を与える。
近年の科学コミュニケーションの増大を考えると、科学出版物からの発見が一般大衆にどのように報告されるかについて、きめ細かい理解が不可欠である。
論文 参考訳(メタデータ) (2024-02-19T19:00:01Z) - Zero-shot Causal Graph Extrapolation from Text via LLMs [50.596179963913045]
我々は,自然言語から因果関係を推定する大規模言語モデル (LLM) の能力を評価する。
LLMは、(特別な)トレーニングサンプルを必要とせずにペア関係のベンチマークで競合性能を示す。
我々は、反復的なペアワイズクエリを通して因果グラフを外挿するアプローチを拡張した。
論文 参考訳(メタデータ) (2023-12-22T13:14:38Z) - Causal Inference in Natural Language Processing: Estimation, Prediction,
Interpretation and Beyond [38.055142444836925]
学術分野にまたがる研究を集約し、より広い自然言語処理の現場に配置する。
本稿では,因果効果を推定する統計的課題を紹介し,テキストを結果,治療,あるいはコンバウンディングに対処するための手段として用いるような設定を包含する。
さらに, NLPモデルの性能, 堅牢性, 公正性, 解釈可能性を向上させるために, 因果推論の潜在的利用について検討する。
論文 参考訳(メタデータ) (2021-09-02T05:40:08Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
因果誘導における現在の視覚システムの系統的評価のための抽象因果分析データセットについて紹介する。
Blicket実験における因果発見の研究の流れに触発され、独立シナリオと介入シナリオのいずれにおいても、以下の4種類の質問で視覚的推論システムに問い合わせる。
純粋なニューラルモデルは確率レベルのパフォーマンスの下で連想戦略に向かう傾向があるのに対し、ニューロシンボリックな組み合わせは後方ブロッキングの推論に苦しむ。
論文 参考訳(メタデータ) (2021-03-26T02:42:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。