Application-oriented automatic hyperparameter optimization for spiking neural network prototyping
- URL: http://arxiv.org/abs/2502.12172v1
- Date: Thu, 13 Feb 2025 14:49:44 GMT
- Title: Application-oriented automatic hyperparameter optimization for spiking neural network prototyping
- Authors: Vittorio Fra,
- Abstract summary: This document uses the Neural Network Intelligence (NNI) toolkit as reference framework to present one such solution.
A summary of published works employing the presented pipeline is reported as possible source of insights into application-oriented HPO experiments for SNN prototyping.
- Score: 0.0
- License:
- Abstract: Hyperparameter optimization (HPO) is of paramount importance in the development of high-performance, specialized artificial intelligence (AI) models, ranging from well-established machine learning (ML) solutions to the deep learning (DL) domain and the field of spiking neural networks (SNNs). The latter introduce further complexity due to the neuronal computational units and their additional hyperparameters, whose inadequate setting can dramatically impact the final model performance. At the cost of possible reduced generalization capabilities, the most suitable strategy to fully disclose the power of SNNs is to adopt an application-oriented approach and perform extensive HPO experiments. To facilitate these operations, automatic pipelines are fundamental, and their configuration is crucial. In this document, the Neural Network Intelligence (NNI) toolkit is used as reference framework to present one such solution, with a use case example providing evidence of the corresponding results. In addition, a summary of published works employing the presented pipeline is reported as possible source of insights into application-oriented HPO experiments for SNN prototyping.
Related papers
- QP-SNN: Quantized and Pruned Spiking Neural Networks [10.74122828236122]
Spiking Neural Networks (SNNs) leverage spikes to encode information and operate in an event-driven manner.
We propose a hardware-friendly and lightweight SNN, aimed at effectively deploying high-performance SNN in resource-limited scenarios.
arXiv Detail & Related papers (2025-02-09T13:50:59Z) - Efficient Hyperparameter Importance Assessment for CNNs [1.7778609937758323]
This paper aims to quantify the importance weights of some hyperparameters in Convolutional Neural Networks (CNNs) with an algorithm called N-RReliefF.
We conduct an extensive study by training over ten thousand CNN models across ten popular image classification datasets.
arXiv Detail & Related papers (2024-10-11T15:47:46Z) - Towards Leveraging AutoML for Sustainable Deep Learning: A Multi-Objective HPO Approach on Deep Shift Neural Networks [16.314030132923026]
We study the impact of hyperparameter optimization (HPO) to maximize DSNN performance while minimizing resource consumption.
Experimental results demonstrate the effectiveness of our approach, resulting in models with over 80% in accuracy and low computational cost.
arXiv Detail & Related papers (2024-04-02T14:03:37Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Characterization of Generalizability of Spike Time Dependent Plasticity
trained Spiking Neural Networks [8.024434062411943]
A Spiking Neural Network (SNN) trained with Spike Time Dependent Plasticity (STDP) is a neuro-inspired unsupervised learning method.
This paper studies the generalizability properties of the STDP learning processes using the Hausdorff dimension of the trajectories of the learning algorithm.
arXiv Detail & Related papers (2021-05-31T02:19:06Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Model-Driven Beamforming Neural Networks [47.754731555563836]
This article introduces general data- and model-driven beamforming neural networks (BNNs)
It presents various possible learning strategies, and also discusses complexity reduction for the DL-based BNNs.
We also offer enhancement methods such as training-set augmentation and transfer learning in order to improve the generality of BNNs.
arXiv Detail & Related papers (2020-01-15T12:50:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.