Suboptimal Shapley Value Explanations
- URL: http://arxiv.org/abs/2502.12209v1
- Date: Mon, 17 Feb 2025 01:17:12 GMT
- Title: Suboptimal Shapley Value Explanations
- Authors: Xiaolei Lu,
- Abstract summary: Deep Neural Networks (DNNs) have demonstrated strong capacity in supporting a wide variety of applications.
Shapley value has emerged as a prominent tool to analyze feature importance to help people understand the inference process of DNNs.
We propose a simple uncertainty-based reweighting mechanism to accelerate the computation process.
- Score: 3.0872915940839274
- License:
- Abstract: Deep Neural Networks (DNNs) have demonstrated strong capacity in supporting a wide variety of applications. Shapley value has emerged as a prominent tool to analyze feature importance to help people understand the inference process of deep neural models. Computing Shapley value function requires choosing a baseline to represent feature's missingness. However, existing random and conditional baselines could negatively influence the explanation. In this paper, by analyzing the suboptimality of different baselines, we identify the problematic baseline where the asymmetric interaction between $\bm{x}'_i$ (the replacement of the faithful influential feature) and other features has significant directional bias toward the model's output, and conclude that $p(y|\bm{x}'_i) = p(y)$ potentially minimizes the asymmetric interaction involving $\bm{x}'_i$. We further generalize the uninformativeness of $\bm{x}'_i$ toward the label space $L$ to avoid estimating $p(y)$ and design a simple uncertainty-based reweighting mechanism to accelerate the computation process. We conduct experiments on various NLP tasks and our quantitative analysis demonstrates the effectiveness of the proposed uncertainty-based reweighting mechanism. Furthermore, by measuring the consistency of explanations generated by explainable methods and human, we highlight the disparity between model inference and human understanding.
Related papers
- Sample Complexity of Offline Distributionally Robust Linear Markov Decision Processes [37.15580574143281]
offline reinforcement learning (RL)
This paper considers the sample complexity of distributionally robust linear Markov decision processes (MDPs) with an uncertainty set characterized by the total variation distance using offline data.
We develop a pessimistic model-based algorithm and establish its sample complexity bound under minimal data coverage assumptions.
arXiv Detail & Related papers (2024-03-19T17:48:42Z) - Variational Shapley Network: A Probabilistic Approach to Self-Explaining
Shapley values with Uncertainty Quantification [2.6699011287124366]
Shapley values have emerged as a foundational tool in machine learning (ML) for elucidating model decision-making processes.
We introduce a novel, self-explaining method that simplifies the computation of Shapley values significantly, requiring only a single forward pass.
arXiv Detail & Related papers (2024-02-06T18:09:05Z) - Online non-parametric likelihood-ratio estimation by Pearson-divergence
functional minimization [55.98760097296213]
We introduce a new framework for online non-parametric LRE (OLRE) for the setting where pairs of iid observations $(x_t sim p, x'_t sim q)$ are observed over time.
We provide theoretical guarantees for the performance of the OLRE method along with empirical validation in synthetic experiments.
arXiv Detail & Related papers (2023-11-03T13:20:11Z) - A Robustness Analysis of Blind Source Separation [91.3755431537592]
Blind source separation (BSS) aims to recover an unobserved signal from its mixture $X=f(S)$ under the condition that the transformation $f$ is invertible but unknown.
We present a general framework for analysing such violations and quantifying their impact on the blind recovery of $S$ from $X$.
We show that a generic BSS-solution in response to general deviations from its defining structural assumptions can be profitably analysed in the form of explicit continuity guarantees.
arXiv Detail & Related papers (2023-03-17T16:30:51Z) - Sample Complexity of Nonparametric Off-Policy Evaluation on
Low-Dimensional Manifolds using Deep Networks [71.95722100511627]
We consider the off-policy evaluation problem of reinforcement learning using deep neural networks.
We show that, by choosing network size appropriately, one can leverage the low-dimensional manifold structure in the Markov decision process.
arXiv Detail & Related papers (2022-06-06T20:25:20Z) - Instance-optimality in optimal value estimation: Adaptivity via
variance-reduced Q-learning [99.34907092347733]
We analyze the problem of estimating optimal $Q$-value functions for a discounted Markov decision process with discrete states and actions.
Using a local minimax framework, we show that this functional arises in lower bounds on the accuracy on any estimation procedure.
In the other direction, we establish the sharpness of our lower bounds, up to factors logarithmic in the state and action spaces, by analyzing a variance-reduced version of $Q$-learning.
arXiv Detail & Related papers (2021-06-28T00:38:54Z) - Stochastic Approximation for Online Tensorial Independent Component
Analysis [98.34292831923335]
Independent component analysis (ICA) has been a popular dimension reduction tool in statistical machine learning and signal processing.
In this paper, we present a by-product online tensorial algorithm that estimates for each independent component.
arXiv Detail & Related papers (2020-12-28T18:52:37Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - A Precise High-Dimensional Asymptotic Theory for Boosting and
Minimum-$\ell_1$-Norm Interpolated Classifiers [3.167685495996986]
This paper establishes a precise high-dimensional theory for boosting on separable data.
Under a class of statistical models, we provide an exact analysis of the universality error of boosting.
We also explicitly pin down the relation between the boosting test error and the optimal Bayes error.
arXiv Detail & Related papers (2020-02-05T00:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.