Variational Shapley Network: A Probabilistic Approach to Self-Explaining
Shapley values with Uncertainty Quantification
- URL: http://arxiv.org/abs/2402.04211v1
- Date: Tue, 6 Feb 2024 18:09:05 GMT
- Title: Variational Shapley Network: A Probabilistic Approach to Self-Explaining
Shapley values with Uncertainty Quantification
- Authors: Mert Ketenci, I\~nigo Urteaga, Victor Alfonso Rodriguez, No\'emie
Elhadad, Adler Perotte
- Abstract summary: Shapley values have emerged as a foundational tool in machine learning (ML) for elucidating model decision-making processes.
We introduce a novel, self-explaining method that simplifies the computation of Shapley values significantly, requiring only a single forward pass.
- Score: 2.6699011287124366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shapley values have emerged as a foundational tool in machine learning (ML)
for elucidating model decision-making processes. Despite their widespread
adoption and unique ability to satisfy essential explainability axioms,
computational challenges persist in their estimation when ($i$) evaluating a
model over all possible subset of input feature combinations, ($ii$) estimating
model marginals, and ($iii$) addressing variability in explanations. We
introduce a novel, self-explaining method that simplifies the computation of
Shapley values significantly, requiring only a single forward pass. Recognizing
the deterministic treatment of Shapley values as a limitation, we explore
incorporating a probabilistic framework to capture the inherent uncertainty in
explanations. Unlike alternatives, our technique does not rely directly on the
observed data space to estimate marginals; instead, it uses adaptable baseline
values derived from a latent, feature-specific embedding space, generated by a
novel masked neural network architecture. Evaluations on simulated and real
datasets underscore our technique's robust predictive and explanatory
performance.
Related papers
- Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
We show for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete.
We propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees.
arXiv Detail & Related papers (2024-07-10T09:13:11Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
We propose a straightforward and efficient Shapley estimator, SimSHAP, by eliminating redundant techniques.
In our analysis of existing approaches, we observe that estimators can be unified as a linear transformation of randomly summed values from feature subsets.
Our experiments validate the effectiveness of our SimSHAP, which significantly accelerates the computation of accurate Shapley values.
arXiv Detail & Related papers (2023-11-02T06:09:24Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - DU-Shapley: A Shapley Value Proxy for Efficient Dataset Valuation [23.646508094051768]
We consider the dataset valuation problem, that is, the problem of quantifying the incremental gain.
The Shapley value is a natural tool to perform dataset valuation due to its formal axiomatic justification.
We propose a novel approximation, referred to as discrete uniform Shapley, which is expressed as an expectation under a discrete uniform distribution.
arXiv Detail & Related papers (2023-06-03T10:22:50Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Robustness of Machine Learning Models Beyond Adversarial Attacks [0.0]
We show that the widely used concept of adversarial robustness and closely related metrics are not necessarily valid metrics for determining the robustness of ML models.
We propose a flexible approach that models possible perturbations in input data individually for each application.
This is then combined with a probabilistic approach that computes the likelihood that a real-world perturbation will change a prediction.
arXiv Detail & Related papers (2022-04-21T12:09:49Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Exact Shapley Values for Local and Model-True Explanations of Decision
Tree Ensembles [0.0]
We consider the application of Shapley values for explaining decision tree ensembles.
We present a novel approach to Shapley value-based feature attribution that can be applied to random forests and boosted decision trees.
arXiv Detail & Related papers (2021-12-16T20:16:02Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Explaining predictive models using Shapley values and non-parametric
vine copulas [2.6774008509840996]
We propose two new approaches for modelling the dependence between the features.
The performance of the proposed methods is evaluated on simulated data sets and a real data set.
Experiments demonstrate that the vine copula approaches give more accurate approximations to the true Shapley values than its competitors.
arXiv Detail & Related papers (2021-02-12T09:43:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.