論文の概要: Spatiotemporal-aware Trend-Seasonality Decomposition Network for Traffic Flow Forecasting
- arxiv url: http://arxiv.org/abs/2502.12213v1
- Date: Mon, 17 Feb 2025 03:29:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:08:08.142883
- Title: Spatiotemporal-aware Trend-Seasonality Decomposition Network for Traffic Flow Forecasting
- Title(参考訳): 交通流予測のための時空間的トレンド・季節性分解ネットワーク
- Authors: Lingxiao Cao, Bin Wang, Guiyuan Jiang, Yanwei Yu, Junyu Dong,
- Abstract要約: 我々は新しいモデル、Stemporal-Aware Trend-Seasonality Decomposition Network (STDN)を導入する。
STDNはグラフ内の異なる時間で各トラフィックノードのトレンド循環成分と季節成分を分離する。
実世界の交通データセットで行った実験は、STDNが顕著なコストで優れた性能を発揮することを示した。
- 参考スコア(独自算出の注目度): 37.33982103558488
- License:
- Abstract: Traffic prediction is critical for optimizing travel scheduling and enhancing public safety, yet the complex spatial and temporal dynamics within traffic data present significant challenges for accurate forecasting. In this paper, we introduce a novel model, the Spatiotemporal-aware Trend-Seasonality Decomposition Network (STDN). This model begins by constructing a dynamic graph structure to represent traffic flow and incorporates novel spatio-temporal embeddings to jointly capture global traffic dynamics. The representations learned are further refined by a specially designed trend-seasonality decomposition module, which disentangles the trend-cyclical component and seasonal component for each traffic node at different times within the graph. These components are subsequently processed through an encoder-decoder network to generate the final predictions. Extensive experiments conducted on real-world traffic datasets demonstrate that STDN achieves superior performance with remarkable computation cost. Furthermore, we have released a new traffic dataset named JiNan, which features unique inner-city dynamics, thereby enriching the scenario comprehensiveness in traffic prediction evaluation.
- Abstract(参考訳): 交通予測は旅行スケジュールの最適化と公共の安全向上に重要であるが、交通データ内の複雑な空間的・時間的ダイナミクスは正確な予測に重大な課題をもたらす。
本稿では,時空間対応型トレンド・季節性分解ネットワーク(STDN)について紹介する。
このモデルは、トラフィックフローを表現するために動的グラフ構造を構築し、グローバルなトラフィックダイナミクスを共同で捉えるために、新しい時空間埋め込みを組み込むことから始まる。
得られた表現は、グラフ内の異なる時間で各トラフィックノードのトレンド循環成分と季節成分をアンタングルする特別に設計されたトレンド季節分解モジュールによってさらに洗練される。
これらのコンポーネントはその後、エンコーダ・デコーダネットワークを介して処理され、最終的な予測を生成する。
実世界のトラフィックデータセットで実施された大規模な実験により、STDNは計算コストが著しく向上することを示した。
さらに,交通予測評価におけるシナリオの包括性を高めるため,内都市動態を特徴とする新しい交通データセット「JiNan」もリリースした。
関連論文リスト
- SFADNet: Spatio-temporal Fused Graph based on Attention Decoupling Network for Traffic Prediction [4.868638426254428]
本稿では,空間的特徴量に基づいてトラフィックフローを複数のトラフィックパターンに分類する,革新的なトラフィックフロー予測ネットワークであるSFADNetを提案する。
各パターンに対して、残差グラフ畳み込みモジュールと時系列モジュールを用いて、相互アテンション機構に基づく独立適応時間融合グラフを構築する。
大規模な実験結果によると、SFADNetは大規模な4スケールのデータセットで現在の最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2025-01-07T09:09:50Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Navigating Spatio-Temporal Heterogeneity: A Graph Transformer Approach for Traffic Forecasting [13.309018047313801]
交通予測はスマートシティの発展において重要な研究分野として浮上している。
最短時間相関のためのネットワークモデリングの最近の進歩は、パフォーマンスのリターンが低下し始めている。
これらの課題に対処するために、時空間グラフ変換器(STGormer)を導入する。
本研究では,その構造に基づく空間符号化手法を2つ設計し,時間位置をバニラ変圧器に統合して時間的トラフィックパターンをキャプチャする。
論文 参考訳(メタデータ) (2024-08-20T13:18:21Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - ST-RetNet: A Long-term Spatial-Temporal Traffic Flow Prediction Method [1.8531577178922987]
時空間共振ネットワーク(ST-RetNet)と呼ばれる革新的なモデルを提案する。
空間スケールでは,道路網の動的空間的特徴を抽出するために適応的隣接行列を用いて,位相グラフ構造を空間共役ネットワーク(S-RetNet)に統合する。
時間的スケールでは,交通流パターンの長期的依存性の把握に優れたテンポラル・リテータ・ネットワーク(T-RetNet)を提案する。
論文 参考訳(メタデータ) (2024-07-13T03:52:32Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event
Prediction [16.530361912832763]
本稿では,交通渋滞イベント予測のための時間グラフニューラルポイントプロセスフレームワークSTNPPを提案する。
提案手法は,既存の最先端手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-11-15T01:22:47Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - PSTN: Periodic Spatial-temporal Deep Neural Network for Traffic
Condition Prediction [8.255993195520306]
本稿では,交通条件の予測性能を改善するために,周期的深部ニューラルネットワーク(PSTN)を3つのモジュールで提案する。
まず、歴史交通情報を折り畳み、グラフ畳み込みネットワークと時間畳み込みネットワークからなるモジュールに供給する。
論文 参考訳(メタデータ) (2021-08-05T07:42:43Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。