A Pathwise Coordinate Descent Algorithm for LASSO Penalized Quantile Regression
- URL: http://arxiv.org/abs/2502.12363v1
- Date: Mon, 17 Feb 2025 22:57:41 GMT
- Title: A Pathwise Coordinate Descent Algorithm for LASSO Penalized Quantile Regression
- Authors: Sanghee Kim, Sumanta Basu,
- Abstract summary: We develop a fast, pathwise coordinate descent algorithm to compute exact penalized quantile regression estimates for high-dimensional data.
Our algorithm runs substantially faster than existing alternatives based on approximate CD and linear program.
- Score: 0.6445605125467572
- License:
- Abstract: $\ell_1$ penalized quantile regression is used in many fields as an alternative to penalized least squares regressions for high-dimensional data analysis. Existing algorithms for penalized quantile regression either use linear programming, which does not scale well in high dimension, or an approximate coordinate descent (CD) which does not solve for exact coordinatewise minimum of the nonsmooth loss function. Further, neither approaches build fast, pathwise algorithms commonly used in high-dimensional statistics to leverage sparsity structure of the problem in large-scale data sets. To avoid the computational challenges associated with the nonsmooth quantile loss, some recent works have even advocated using smooth approximations to the exact problem. In this work, we develop a fast, pathwise coordinate descent algorithm to compute exact $\ell_1$ penalized quantile regression estimates for high-dimensional data. We derive an easy-to-compute exact solution for the coordinatewise nonsmooth loss minimization, which, to the best of our knowledge, has not been reported in the literature. We also employ a random perturbation strategy to help the algorithm avoid getting stuck along the regularization path. In simulated data sets, we show that our algorithm runs substantially faster than existing alternatives based on approximate CD and linear program, while retaining the same level of estimation accuracy.
Related papers
- Pathwise optimization for bridge-type estimators and its applications [49.1574468325115]
Pathwise methods allow to efficiently compute the full path for penalized estimators.
We apply these algorithms to the penalized estimation of processes observed at discrete times.
arXiv Detail & Related papers (2024-12-05T10:38:29Z) - A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - An efficient, provably exact, practical algorithm for the 0-1 loss
linear classification problem [4.418462313508022]
We show that incremental cell (ICE) can solve the 0-1 loss classification problem exactly in time.
This is the first, rigorously-proven, practical algorithm for this long-standing problem.
arXiv Detail & Related papers (2023-06-21T15:41:34Z) - Computationally Efficient and Statistically Optimal Robust
High-Dimensional Linear Regression [15.389011827844572]
High-tailed linear regression under heavy-tailed noise or objective corruption is challenging, both computationally statistically.
In this paper, we introduce an algorithm for both the noise Gaussian or heavy 1 + epsilon regression problems.
arXiv Detail & Related papers (2023-05-10T14:31:03Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap is a computationally feasible algorithm to uncover low-dimensional structures in the Wasserstein space.
We show that LOT Wassmap attains correct embeddings and that the quality improves with increased sample size.
We also show how LOT Wassmap significantly reduces the computational cost when compared to algorithms that depend on pairwise distance computations.
arXiv Detail & Related papers (2023-02-14T22:12:16Z) - Hardness and Algorithms for Robust and Sparse Optimization [17.842787715567436]
We explore algorithms and limitations for sparse optimization problems such as sparse linear regression and robust linear regression.
Specifically, the sparse linear regression problem seeks a $k$-sparse vector $xinmathbbRd$ to minimize $|Ax-b|$.
The robust linear regression problem seeks a set $S$ that ignores at most $k$ rows and a vector $x$ to minimize $|(Ax-b)_S|$.
arXiv Detail & Related papers (2022-06-29T01:40:38Z) - A Data-Driven Line Search Rule for Support Recovery in High-dimensional
Data Analysis [5.180648702293017]
We propose a novel and efficient data-driven line search rule to adaptively determine the appropriate step size.
A large number of comparisons with state-of-the-art algorithms in linear and logistic regression problems show the stability, effectiveness and superiority of the proposed algorithms.
arXiv Detail & Related papers (2021-11-21T12:18:18Z) - Correcting Momentum with Second-order Information [50.992629498861724]
We develop a new algorithm for non-critical optimization that finds an $O(epsilon)$epsilon point in the optimal product.
We validate our results on a variety of large-scale deep learning benchmarks and architectures.
arXiv Detail & Related papers (2021-03-04T19:01:20Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Least Squares Regression with Markovian Data: Fundamental Limits and
Algorithms [69.45237691598774]
We study the problem of least squares linear regression where the data-points are dependent and are sampled from a Markov chain.
We establish sharp information theoretic minimax lower bounds for this problem in terms of $tau_mathsfmix$.
We propose an algorithm based on experience replay--a popular reinforcement learning technique--that achieves a significantly better error rate.
arXiv Detail & Related papers (2020-06-16T04:26:50Z) - Quasi-Newton Solver for Robust Non-Rigid Registration [35.66014845211251]
We propose a formulation for robust non-rigid registration based on a globally smooth robust estimator for data fitting and regularization.
We apply the majorization-minimization algorithm to the problem, which reduces each iteration to solving a simple least-squares problem with L-BFGS.
arXiv Detail & Related papers (2020-04-09T01:45:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.