論文の概要: On the Robust Approximation of ASR Metrics
- arxiv url: http://arxiv.org/abs/2502.12408v1
- Date: Tue, 18 Feb 2025 01:10:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:03:12.593948
- Title: On the Robust Approximation of ASR Metrics
- Title(参考訳): ASR計量のロバスト近似について
- Authors: Abdul Waheed, Hanin Atwany, Rita Singh, Bhiksha Raj,
- Abstract要約: そこで本研究では,ASR性能指標の近似に新たなアプローチを提案し,真理ラベルの必要性を排除した。
提案手法は,音声および転写表現の統一空間におけるマルチモーダル埋め込みと,高品質なプロキシモデルを組み合わせることで,プロキシメトリクスの計算を行う。
実験結果から, 測定値の絶対差を1桁に近似し, 最新のベースラインを50%以上上回る結果を得た。
- 参考スコア(独自算出の注目度): 30.524282767961463
- License:
- Abstract: Recent advances in speech foundation models are largely driven by scaling both model size and data, enabling them to perform a wide range of tasks, including speech recognition. Traditionally, ASR models are evaluated using metrics like Word Error Rate (WER) and Character Error Rate (CER), which depend on ground truth labels. As a result of limited labeled data from diverse domains and testing conditions, the true generalization capabilities of these models beyond standard benchmarks remain unclear. Moreover, labeling data is both costly and time-consuming. To address this, we propose a novel label-free approach for approximating ASR performance metrics, eliminating the need for ground truth labels. Our method utilizes multimodal embeddings in a unified space for speech and transcription representations, combined with a high-quality proxy model to compute proxy metrics. These features are used to train a regression model to predict key ASR metrics like Word Error Rate (WER) and Character Error Rate (CER). We experiment with over 40 models across 14 datasets representing both standard and in-the-wild testing conditions. Our results show that we approximate the metrics within a single-digit absolute difference across all experimental configurations, outperforming the most recent baseline by more than 50\%.
- Abstract(参考訳): 音声基礎モデルの最近の進歩は、主にモデルのサイズとデータの両方をスケールすることで、音声認識を含む幅広いタスクを実行できる。
伝統的に、ASRモデルは、単語誤り率(WER)や文字誤り率(CER)といった、地上の真理ラベルに依存する指標を用いて評価される。
様々なドメインやテスト条件からのラベル付きデータに制限が加えられた結果、これらのモデルの真の一般化能力は標準ベンチマークを超えている。
さらに、データのラベル付けは費用も時間もかかる。
そこで本稿では,ASRの性能指標を近似する新しいラベルフリー手法を提案する。
提案手法は,音声および転写表現の統一空間におけるマルチモーダル埋め込みと,高品質なプロキシモデルを組み合わせることで,プロキシメトリクスの計算を行う。
これらの機能は、ワードエラー率(WER)や文字エラー率(CER)といった主要なASRメトリクスを予測するために、回帰モデルをトレーニングするために使用される。
標準的なテスト条件とWildテスト条件の両方を表す14のデータセットにまたがる40以上のモデルで実験を行った。
実験結果から, 測定値の絶対差を1桁に近似し, 最新のベースラインを50%以上上回る結果を得た。
関連論文リスト
- LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content [62.816876067499415]
我々は、科学的ArXiv論文に基づくスケーラブルな進化型ライブベンチマークであるLiveXivを提案する。
LiveXivは、任意のタイムスタンプでドメイン固有の原稿にアクセスし、視覚的な問合せペアを自動的に生成することを提案する。
ベンチマークの最初のバージョンで、複数のオープンでプロプライエタリなLMM(Large Multi-modal Models)をベンチマークし、その挑戦的な性質を示し、モデルの真の能力を明らかにする。
論文 参考訳(メタデータ) (2024-10-14T17:51:23Z) - ANLS* -- A Universal Document Processing Metric for Generative Large Language Models [40.94659575657584]
本稿ではANLS*と呼ばれる生成モデルを評価するための新しい指標を提案する。
ANLS*メトリックは、既存のANLSメトリクスをドロップ・イン・リプレースとして拡張し、以前報告されたANLSスコアと互換性がある。
また、SFTと呼ばれる文書のプロンプトを生成する新しい手法を、LATINなどの他のプロンプト技術に対してベンチマークする。
論文 参考訳(メタデータ) (2024-02-06T09:50:08Z) - Machine Translation Meta Evaluation through Translation Accuracy
Challenge Sets [92.38654521870444]
ACESは146の言語ペアにまたがる対照的な課題セットです。
このデータセットは、メトリクスが68の翻訳精度の誤差を識別できるかどうかを調べることを目的としている。
我々は、WMT2022および2023のメトリクス共有タスクに提出された50のメトリクスに対して、ACESをベンチマークすることで、大規模な研究を行う。
論文 参考訳(メタデータ) (2024-01-29T17:17:42Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of Open Information Extraction [49.15931834209624]
実世界におけるオープン情報抽出モデルの評価をシミュレートする最初のベンチマークを示す。
我々は、それぞれの例が知識不変のcliqueである大規模なテストベッドを設計し、注釈付けする。
さらにロバスト性計量を解明することにより、その性能が全体の傾きに対して一貫して正確であるならば、モデルはロバストであると判断される。
論文 参考訳(メタデータ) (2023-05-23T12:05:09Z) - BUMP: A Benchmark of Unfaithful Minimal Pairs for Meta-Evaluation of
Faithfulness Metrics [70.52570641514146]
不誠実な最小対 (BUMP) のベンチマークを示す。
BUMPは、889人の人間が書いた最小限のサマリーペアのデータセットである。
非ペアベースのデータセットとは異なり、BUMPはメトリクスの一貫性を測定するために使用することができる。
論文 参考訳(メタデータ) (2022-12-20T02:17:30Z) - Understanding Factual Errors in Summarization: Errors, Summarizers,
Datasets, Error Detectors [105.12462629663757]
本研究では、既存の9つのデータセットから事実性エラーアノテーションを集約し、基礎となる要約モデルに従ってそれらを階層化する。
本稿では,この階層化ベンチマークにおいて,最近のChatGPTベースの指標を含む最先端の事実性指標の性能を比較し,その性能が様々な種類の要約モデルで大きく異なることを示す。
論文 参考訳(メタデータ) (2022-05-25T15:26:48Z) - Evaluation of HTR models without Ground Truth Material [2.4792948967354236]
手書き文字認識モデルの開発における評価は容易である。
しかし、開発からアプリケーションに切り替えると、評価プロセスはトリッキーになります。
我々は,レキシコンに基づく評価が,レキシコンに基づく手法と競合することを示す。
論文 参考訳(メタデータ) (2022-01-17T01:26:09Z) - Constructing interval variables via faceted Rasch measurement and
multitask deep learning: a hate speech application [63.10266319378212]
本稿では,教師付き深層学習と多面的ラッシュアイテム応答理論(IRT)構築手法を組み合わせることで,連続区間スペクトル上の複素変数を測定する手法を提案する。
われわれは、YouTube、Twitter、Redditから5万件のソーシャルメディアコメントを収集し、1万1000人の米国拠点のAmazon Mechanical Turkの労働者によってラベル付けされたデータセット上で、この新しい手法を実証した。
論文 参考訳(メタデータ) (2020-09-22T02:15:05Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。