Emulating Retrieval Augmented Generation via Prompt Engineering for Enhanced Long Context Comprehension in LLMs
- URL: http://arxiv.org/abs/2502.12462v1
- Date: Tue, 18 Feb 2025 02:49:40 GMT
- Title: Emulating Retrieval Augmented Generation via Prompt Engineering for Enhanced Long Context Comprehension in LLMs
- Authors: Joon Park, Kyohei Atarashi, Koh Takeuchi, Hisashi Kashima,
- Abstract summary: This paper proposes a method that emulates Retrieval Augmented Generation (RAG) through specialized prompt engineering and chain-of-thought reasoning.
We evaluate our approach on selected tasks from BABILong, which interleaves standard bAbI QA problems with large amounts of distractor text.
- Score: 23.960451986662996
- License:
- Abstract: This paper addresses the challenge of comprehending very long contexts in Large Language Models (LLMs) by proposing a method that emulates Retrieval Augmented Generation (RAG) through specialized prompt engineering and chain-of-thought (CoT) reasoning. While recent LLMs support over 100,000 tokens in a single prompt, simply enlarging context windows has not guaranteed robust multi-hop reasoning when key details are scattered across massive input. Our approach treats the model as both the retriever and the reasoner: it first tags relevant segments within a long passage, then employs a stepwise CoT workflow to integrate these pieces of evidence. This single-pass method thereby reduces reliance on an external retriever, yet maintains focus on crucial segments. We evaluate our approach on selected tasks from BABILong, which interleaves standard bAbI QA problems with large amounts of distractor text. Compared to baseline (no retrieval) and naive RAG pipelines, our approach more accurately handles multi-fact questions such as object location tracking, counting, and indefinite knowledge. Furthermore, we analyze how prompt structure, including the order of question, relevant-text tags, and overall instructions, significantly affects performance. These findings underscore that optimized prompt engineering, combined with guided reasoning, can enhance LLMs' long-context comprehension and serve as a lightweight alternative to traditional retrieval pipelines.
Related papers
- Learning More Effective Representations for Dense Retrieval through Deliberate Thinking Before Search [65.53881294642451]
Deliberate Thinking based Dense Retriever (DEBATER)
DEBATER enhances recent dense retrievers by enabling them to learn more effective document representations through a step-by-step thinking process.
Experimental results show that DEBATER significantly outperforms existing methods across several retrieval benchmarks.
arXiv Detail & Related papers (2025-02-18T15:56:34Z) - Does RAG Really Perform Bad For Long-Context Processing? [15.889864680212147]
RetroLM is a novel framework for long-context processing.
Unlike traditional methods, RetroLM employs KV-level retrieval augmentation.
Building on this framework, we develop a specialized retriever for precise retrieval of critical pages.
arXiv Detail & Related papers (2025-02-17T05:02:25Z) - Enhancing Long Context Performance in LLMs Through Inner Loop Query Mechanism [2.919891871101241]
Transformers have a quadratic scaling of computational complexity with input size.
Retrieval-augmented generation (RAG) can better handle longer contexts by using a retrieval system.
We introduce a novel approach, Inner Loop Memory Augmented Tree Retrieval (ILM-TR)
arXiv Detail & Related papers (2024-10-11T19:49:05Z) - NeedleBench: Can LLMs Do Retrieval and Reasoning in 1 Million Context Window? [37.64593022203498]
NeedleBench is a framework consisting of progressively more challenging tasks for assessing bilingual long-context capabilities.
We use the framework to assess how well the leading open-source models can identify key information relevant to the question.
We propose the Ancestral Trace Challenge to mimic the complexity of logical reasoning challenges that are likely to be present in real-world long-context tasks.
arXiv Detail & Related papers (2024-07-16T17:59:06Z) - LightPAL: Lightweight Passage Retrieval for Open Domain Multi-Document Summarization [9.739781953744606]
Open-Domain Multi-Document Summarization (ODMDS) is the task of generating summaries from large document collections in response to user queries.
Traditional retrieve-then-summarize approaches fall short for open-ended queries in ODMDS tasks.
We propose LightPAL, a lightweight passage retrieval method for ODMDS.
arXiv Detail & Related papers (2024-06-18T10:57:27Z) - Long Context Alignment with Short Instructions and Synthesized Positions [56.1267385315404]
This paper introduces Step-Skipping Alignment (SkipAlign)
It is a new technique designed to enhance the long-context capabilities of Large Language Models (LLMs)
With a careful selection of the base model and alignment datasets, SkipAlign with only 6B parameters achieves it's best performance and comparable with strong baselines like GPT-3.5-Turbo-16K on LongBench.
arXiv Detail & Related papers (2024-05-07T01:56:22Z) - SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs [85.54906813106683]
We propose a simple yet effective framework to enhance open-domain question answering (ODQA) with large language models (LLMs)
SuRe helps LLMs predict more accurate answers for a given question, which are well-supported by the summarized retrieval (SuRe)
Experimental results on diverse ODQA benchmarks demonstrate the superiority of SuRe, with improvements of up to 4.6% in exact match (EM) and 4.0% in F1 score over standard prompting approaches.
arXiv Detail & Related papers (2024-04-17T01:15:54Z) - Walking Down the Memory Maze: Beyond Context Limit through Interactive
Reading [63.93888816206071]
We introduce MemWalker, a method that processes the long context into a tree of summary nodes. Upon receiving a query, the model navigates this tree in search of relevant information, and responds once it gathers sufficient information.
We show that, beyond effective reading, MemWalker enhances explainability by highlighting the reasoning steps as it interactively reads the text; pinpointing the relevant text segments related to the query.
arXiv Detail & Related papers (2023-10-08T06:18:14Z) - Modeling Uncertainty and Using Post-fusion as Fallback Improves Retrieval Augmented Generation with LLMs [80.74263278847063]
The integration of retrieved passages and large language models (LLMs) has significantly contributed to improving open-domain question answering.
This paper investigates different methods of combining retrieved passages with LLMs to enhance answer generation.
arXiv Detail & Related papers (2023-08-24T05:26:54Z) - Learning to Ask Conversational Questions by Optimizing Levenshtein
Distance [83.53855889592734]
We introduce a Reinforcement Iterative Sequence Editing (RISE) framework that optimize the minimum Levenshtein distance (MLD) through explicit editing actions.
RISE is able to pay attention to tokens that are related to conversational characteristics.
Experimental results on two benchmark datasets show that RISE significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-06-30T08:44:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.