論文の概要: Mixture of Attention Yields Accurate Results for Tabular Data
- arxiv url: http://arxiv.org/abs/2502.12507v1
- Date: Tue, 18 Feb 2025 03:43:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:08:00.195523
- Title: Mixture of Attention Yields Accurate Results for Tabular Data
- Title(参考訳): タブラルデータにおける意図収率の混合による精度評価
- Authors: Xuechen Li, Yupeng Li, Jian Liu, Xiaolin Jin, Tian Yang, Xin Hu,
- Abstract要約: 本稿では,エンコーダ・デコーダ・トランスを用いたMAYAを提案する。
エンコーダでは、複数の並列注意枝を構成するMOA(Mixture of Attention)を設計する。
我々は、より堅牢な表現を生成するために、動的一貫性重み制約を伴う協調学習を採用する。
- 参考スコア(独自算出の注目度): 21.410818837489973
- License:
- Abstract: Tabular data inherently exhibits significant feature heterogeneity, but existing transformer-based methods lack specialized mechanisms to handle this property. To bridge the gap, we propose MAYA, an encoder-decoder transformer-based framework. In the encoder, we design a Mixture of Attention (MOA) that constructs multiple parallel attention branches and averages the features at each branch, effectively fusing heterogeneous features while limiting parameter growth. Additionally, we employ collaborative learning with a dynamic consistency weight constraint to produce more robust representations. In the decoder stage, cross-attention is utilized to seamlessly integrate tabular data with corresponding label features. This dual-attention mechanism effectively captures both intra-instance and inter-instance interactions. We evaluate the proposed method on a wide range of datasets and compare it with other state-of-the-art transformer-based methods. Extensive experiments demonstrate that our model achieves superior performance among transformer-based methods in both tabular classification and regression tasks.
- Abstract(参考訳): タブラルデータは本質的に重要な特徴の不均一性を示すが、既存のトランスフォーマーベースの手法では、この特性を扱うための特別なメカニズムが欠如している。
このギャップを埋めるために,エンコーダ・デコーダ・トランスフォーマーをベースとしたMAYAを提案する。
エンコーダでは、複数の並列注意枝を構築し、各分岐における特徴を平均化し、パラメータ成長を制限しながら、効果的に不均一な特徴を融合するミクチャー・オブ・アテンション(MOA)を設計する。
さらに、より堅牢な表現を生成するために、動的整合性重み制約を伴う協調学習を採用する。
デコーダ段階では、クロスアテンションを利用して、表層データを対応するラベル特徴とシームレスに統合する。
このデュアルアテンション機構は、インスタンス内相互作用とインスタンス間相互作用の両方を効果的に捉える。
提案手法を幅広いデータセット上で評価し,他の最先端のトランスフォーマー方式と比較した。
広汎な実験により,本モデルは表層分類と回帰タスクの両方においてトランスフォーマーに基づく手法で優れた性能を発揮することが示された。
関連論文リスト
- ConvMixFormer- A Resource-efficient Convolution Mixer for Transformer-based Dynamic Hand Gesture Recognition [5.311735227179715]
動的ハンドジェスチャのための新しいConvMixFormerアーキテクチャを探索し,考案する。
提案手法は,NVidia Dynamic Hand Gesture と Briareo のデータセットを用いて評価する。
我々のモデルは、単一およびマルチモーダル入力に対して最先端の結果を得た。
論文 参考訳(メタデータ) (2024-11-11T16:45:18Z) - TabDiff: a Mixed-type Diffusion Model for Tabular Data Generation [91.50296404732902]
グラフデータの混合型分布を1つのモデルでモデル化する共同拡散フレームワークであるTabDiffを紹介する。
我々の重要な革新は、数値データと分類データのための連立連続時間拡散プロセスの開発である。
TabDiffは、既存の競合ベースラインよりも優れた平均性能を実現し、ペアワイドカラム相関推定における最先端モデルよりも最大で22.5%改善されている。
論文 参考訳(メタデータ) (2024-10-27T22:58:47Z) - CFPFormer: Feature-pyramid like Transformer Decoder for Segmentation and Detection [1.837431956557716]
特徴ピラミッドは、医療画像のセグメンテーションやオブジェクト検出といったタスクのために、畳み込みニューラルネットワーク(CNN)やトランスフォーマーで広く採用されている。
本稿では,特徴ピラミッドと変圧器を統合したデコーダブロックを提案する。
本モデルでは,既存手法と比較して,小型物体の検出性能が向上する。
論文 参考訳(メタデータ) (2024-04-23T18:46:07Z) - Unifying Feature and Cost Aggregation with Transformers for Semantic and Visual Correspondence [51.54175067684008]
本稿では,高密度マッチングタスク用に設計されたTransformerベースの積分機能とコスト集約ネットワークを提案する。
まず, 特徴集約とコスト集約が異なる特徴を示し, 双方の集約プロセスの司法的利用から生じる実質的な利益の可能性を明らかにした。
本フレームワークは意味マッチングのための標準ベンチマークで評価され,また幾何マッチングにも適用された。
論文 参考訳(メタデータ) (2024-03-17T07:02:55Z) - Pseudo-Label Calibration Semi-supervised Multi-Modal Entity Alignment [7.147651976133246]
マルチモーダル・エンティティ・アライメント(MMEA)は、統合のための2つのマルチモーダル・ナレッジ・グラフ間で等価なエンティティを識別することを目的としている。
Pseudo-label Multimodal Entity Alignment (PCMEA) を半教師付き方式で導入する。
モーメントに基づくコントラスト学習とラベル付きデータとラベルなしデータの完全活用を組み合わせることで、擬似ラベルの品質を向上し、アライメントされたエンティティを近づける。
論文 参考訳(メタデータ) (2024-03-02T12:44:59Z) - Correlated Attention in Transformers for Multivariate Time Series [22.542109523780333]
本稿では,特徴量依存を効率的に捕捉し,既存のトランスフォーマーのエンコーダブロックにシームレスに統合できる新しいアテンション機構を提案する。
特に、関連性のある注意は、特徴チャネルを横断して、クエリとキー間の相互共分散行列をラグ値で計算し、サブシリーズレベルで選択的に表現を集約する。
このアーキテクチャは、瞬時だけでなく、ラタグされた相互相関の発見と表現の学習を容易にすると同時に、本質的に時系列の自動相関をキャプチャする。
論文 参考訳(メタデータ) (2023-11-20T17:35:44Z) - ICAFusion: Iterative Cross-Attention Guided Feature Fusion for
Multispectral Object Detection [25.66305300362193]
大域的特徴相互作用をモデル化するために、二重対向変換器の新たな特徴融合フレームワークを提案する。
このフレームワークは、クエリ誘導のクロスアテンション機構を通じて、オブジェクトの特徴の識別性を高める。
提案手法は,様々なシナリオに適した性能と高速な推論を実現する。
論文 参考訳(メタデータ) (2023-08-15T00:02:10Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Adaptive Hierarchical Similarity Metric Learning with Noisy Labels [138.41576366096137]
適応的階層的類似度メトリック学習法を提案する。
ノイズに敏感な2つの情報、すなわち、クラスワイドのばらつきとサンプルワイドの一貫性を考える。
提案手法は,現在の深層学習手法と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-10-29T02:12:18Z) - Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks [75.69896269357005]
Mixupは、入力例と対応するラベルを線形に補間する最新のデータ拡張技術である。
本稿では,自然言語処理タスクにmixupを適用する方法について検討する。
我々は、様々なNLPタスクに対して、mixup-transformerと呼ばれる、トランスフォーマーベースの事前学習アーキテクチャにmixupを組み込んだ。
論文 参考訳(メタデータ) (2020-10-05T23:37:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。