RM-PoT: Reformulating Mathematical Problems and Solving via Program of Thoughts
- URL: http://arxiv.org/abs/2502.12589v1
- Date: Tue, 18 Feb 2025 06:54:32 GMT
- Title: RM-PoT: Reformulating Mathematical Problems and Solving via Program of Thoughts
- Authors: Yu Zhang, Shujun Peng, Nengwu Wu, Xinhan Lin, Yang Hu, Jie Tang,
- Abstract summary: We propose a three-stage framework that integrates problem reformulation (RM), code-aided reasoning (PoT) and domain-aware few-shot learning.
Our approach first reformulates the input problem into diverse surface forms to reduce structural bias, then retrieves five semantically aligned examples to provide contextual guidance.
- Score: 13.07180561863778
- License:
- Abstract: Recently, substantial advancements have been made in training language models to carry out step-by-step reasoning for solving intricate numerical reasoning tasks. Beyond the methods used to solve these problems, the structure and formulation of the problems themselves also play a crucial role in determining the performance of large language models. We observe that even small changes in the surface form of mathematical problems can have a profound impact on both the answer distribution and solve rate. This highlights the vulnerability of LLMs to surface-level variations, revealing its limited robustness when reasoning through complex problems. In this paper, we propose RM-PoT, a three-stage framework that integrates problem reformulation (RM), code-aided reasoning (PoT), and domain-aware few-shot learning to address these limitations. Our approach first reformulates the input problem into diverse surface forms to reduce structural bias, then retrieves five semantically aligned examples from a pre-constructed domain-specific question bank to provide contextual guidance, and finally generates executable Python code for precise computation.
Related papers
- Large Language Models and Mathematical Reasoning Failures [1.6114012813668932]
This paper investigates the mathematical reasoning capabilities of large language models (LLMs) using 50 newly constructed high-school-level word problems.
We rigorously analyze both final answers and solution steps to identify reasoning failures.
We find that while newer models (e.g., o3-mini, deepseek-r1) achieve higher accuracy, all models exhibit errors in spatial reasoning, strategic planning, and arithmetic.
arXiv Detail & Related papers (2025-02-17T09:07:32Z) - MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations [90.07275414500154]
We observe significant performance drops on MATH-P-Hard across various models.
We also raise concerns about a novel form of memorization where models blindly apply learned problem-solving skills.
arXiv Detail & Related papers (2025-02-10T13:31:46Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - Exposing the Achilles' Heel: Evaluating LLMs Ability to Handle Mistakes in Mathematical Reasoning [11.63133816413199]
Large Language Models (LLMs) have been applied to Math Word Problems (MWPs)
We introduce a novel dataset MWP-MISTAKE, incorporating MWPs with both correct and incorrect reasoning steps generated through rule-based methods and smaller language models.
We highlight GPT-$o's superior performance in mistake detection and rectification and the persistent challenges faced by smaller models.
arXiv Detail & Related papers (2024-06-16T08:06:05Z) - VC Search: Bridging the Gap Between Well-Defined and Ill-Defined Problems in Mathematical Reasoning [46.25056744404318]
We develop a benchmark called Problems with Missing and Contradictory conditions ( PMC) containing over 5,000 validated ill-defined mathematical problems.
VCSEARCH improves the accuracy of identifying unsolvable problems by at least 12% across different large language models.
arXiv Detail & Related papers (2024-06-07T16:24:12Z) - Case-Based Reasoning Approach for Solving Financial Question Answering [5.10832476049103]
FinQA introduced a numerical reasoning dataset for financial documents.
We propose a novel approach to tackle numerical reasoning problems using case based reasoning (CBR)
Our model retrieves relevant cases to address a given question, and then generates an answer based on the retrieved cases and contextual information.
arXiv Detail & Related papers (2024-05-18T10:06:55Z) - Paraphrase and Solve: Exploring and Exploiting the Impact of Surface Form on Mathematical Reasoning in Large Language Models [33.91763946767206]
We study the relationship between the surface form of a mathematical problem and its solvability by large language models.
We propose Self-Consistency-over-Paraphrases (SCoP), which diversifies reasoning paths from specific surface forms of the problem.
arXiv Detail & Related papers (2024-04-17T15:53:49Z) - Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models [62.96551299003463]
We propose textbftextitThought Propagation (TP) to enhance the complex reasoning ability of Large Language Models.
TP first prompts LLMs to propose and solve a set of analogous problems that are related to the input one.
TP reuses the results of analogous problems to directly yield a new solution or derive a knowledge-intensive plan for execution to amend the initial solution obtained from scratch.
arXiv Detail & Related papers (2023-10-06T01:40:09Z) - Faith and Fate: Limits of Transformers on Compositionality [109.79516190693415]
We investigate the limits of transformer large language models across three representative compositional tasks.
These tasks require breaking problems down into sub-steps and synthesizing these steps into a precise answer.
Our empirical findings suggest that transformer LLMs solve compositional tasks by reducing multi-step compositional reasoning into linearized subgraph matching.
arXiv Detail & Related papers (2023-05-29T23:24:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.