A$^2$ATS: Retrieval-Based KV Cache Reduction via Windowed Rotary Position Embedding and Query-Aware Vector Quantization
- URL: http://arxiv.org/abs/2502.12665v2
- Date: Tue, 03 Jun 2025 17:18:23 GMT
- Title: A$^2$ATS: Retrieval-Based KV Cache Reduction via Windowed Rotary Position Embedding and Query-Aware Vector Quantization
- Authors: Junhui He, Junna Xing, Nan Wang, Rui Xu, Shangyu Wu, Peng Zhou, Qiang Liu, Chun Jason Xue, Qingan Li,
- Abstract summary: Long context large language models (LLMs) pose significant challenges for efficient serving due to the large memory footprint and high access overhead of KV cache.<n>Retrieval-based KV cache reduction methods can mitigate these challenges, typically by offloading the complete KV cache to CPU and retrieving necessary tokens on demand during inference.<n>This paper proposes A$2$ATS, a novel retrieval-based KV cache reduction method.
- Score: 17.342214950859145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long context large language models (LLMs) pose significant challenges for efficient serving due to the large memory footprint and high access overhead of KV cache. Retrieval-based KV cache reduction methods can mitigate these challenges, typically by offloading the complete KV cache to CPU and retrieving necessary tokens on demand during inference. However, these methods still suffer from unsatisfactory accuracy degradation and extra retrieval overhead. To address these limitations, this paper proposes A$^2$ATS, a novel retrieval-based KV cache reduction method. A$^2$ATS aims to obtain an accurate approximation of attention scores by applying the vector quantization technique to key states, thereby enabling efficient and precise retrieval of the top-K tokens. First, we propose Windowed Rotary Position Embedding, which decouples the positional dependency from query and key states after position embedding. Then, we propose query-aware vector quantization that optimizes the objective of attention score approximation directly. Finally, we design the heterogeneous inference architecture for KV cache offloading, enabling long context serving with larger batch sizes. Experimental results demonstrate that A$^2$ATS can achieve a lower performance degradation with similar or lower overhead compared to existing methods, thereby increasing long context serving throughput by up to $2.7 \times$.
Related papers
- Lookahead Q-Cache: Achieving More Consistent KV Cache Eviction via Pseudo Query [48.52389201779425]
KV cache memory usage grows substantially with longer text sequences.<n>Existing KV cache eviction methods prune tokens using prefilling-stage attention scores.<n>Lookahead Q-Cache generates low-cost pseudo lookahead queries to better approximate the true decoding-stage queries.
arXiv Detail & Related papers (2025-05-24T10:34:38Z) - Progressive Sparse Attention: Algorithm and System Co-design for Efficient Attention in LLM Serving [10.835583587146274]
This paper presents PSA, a $underlineP$rogressive $underlineS$parse $underlineA$ttention mechanism.
It integrates algorithmic innovations with system co-design to achieve both high inference accuracy and improved efficiency in large language models.
Experiments demonstrate that PSA reduces KV cache usage for attention computation by up to 2.4$times$ and 8.8$times$, and increases end-to-end serving throughput by up to 1.4$times$ and 2.0$times$.
arXiv Detail & Related papers (2025-03-01T07:56:42Z) - DBudgetKV: Dynamic Budget in KV Cache Compression for Ensuring Optimal Performance [125.81664663201282]
We introduce a new KV cache compression method dubbed DBudgetKV.
It features an attention-based metric to signal when the remaining KV cache is unlikely to match the full-cache performance, then halting the pruning process.
Our method is easy to integrate within LLM inference, not only optimizing memory space, but also showing reduced inference time compared to existing methods.
arXiv Detail & Related papers (2025-02-24T06:33:39Z) - KVCrush: Key value cache size-reduction using similarity in head-behaviour [40.792661186062396]
Key-value (KV) caching has emerged as a crucial optimization technique for accelerating inference in large language models (LLMs)
However, the memory footprint of the KV is a huge bottleneck for model deployment directly impacting the model's batch size.
We propose KVCrush which can be combined with many KV compression technologies to improve the model accuracy at a much smaller memory.
arXiv Detail & Related papers (2025-02-24T02:57:51Z) - Activation-aware Probe-Query: Effective Key-Value Retrieval for Long-Context LLMs Inference [56.71209737306054]
We propose textbfActQKV, a training-free, textbfActivation-aware approach that dynamically determines probe-textbfQuery and leverages it to retrieve the relevant textbfKV pairs for inference.
Experiments on the Long-Bench and $infty$ Benchmarks demonstrate its state-of-the-art performance with competitive inference quality and resource efficiency.
arXiv Detail & Related papers (2025-02-19T08:50:44Z) - QuantSpec: Self-Speculative Decoding with Hierarchical Quantized KV Cache [67.84112700032007]
Large Language Models (LLMs) are increasingly being deployed on edge devices for long-context settings.
In these scenarios, the Key-Value ( KV) cache is the primary bottleneck in terms of both GPU memory and latency.
We propose a novel self-speculative decoding framework, QuantSpec, where the draft model shares the architecture of the target model but employs a hierarchical 4-bit quantized KV cache and 4-bit quantized weights for acceleration.
arXiv Detail & Related papers (2025-02-05T20:43:48Z) - More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression [71.42818367729573]
In large language models (LLMs), the memory usage of KV cache has become a critical bottleneck during inference.
The mainstream KV compression methods, including KV pruning and KV quantization, primarily focus on either token or precision dimension separately.
In this paper, we comprehensively investigate the token-precision trade-off in KV cache compression.
arXiv Detail & Related papers (2024-12-17T09:20:31Z) - PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation [65.36715026409873]
Key-value (KV) cache, necessitated by the lengthy input and output sequences, notably contributes to the high inference cost.<n>We present PrefixKV, which reframes the challenge of determining KV cache sizes for all layers into the task of searching for the optimal global prefix configuration.<n>Our method achieves the state-of-the-art performance compared with others.
arXiv Detail & Related papers (2024-12-04T15:48:59Z) - ClusterKV: Manipulating LLM KV Cache in Semantic Space for Recallable Compression [10.003118268356017]
Long context poses significant challenges for inference efficiency.<n>We introduce ClusterKV, which recalls tokens at the granularity of semantic clusters.<n>Experiment results show that ClusterKV attains negligible accuracy loss across various tasks with 32k context lengths.
arXiv Detail & Related papers (2024-12-04T10:58:27Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.
This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.
We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - A Simple and Effective $L_2$ Norm-Based Strategy for KV Cache Compression [13.981807478365452]
Existing approaches to reduce the Key-Value cache size involve either fine-tuning the model to learn a compression strategy or leveraging attention scores to reduce the sequence length.
We find a clear correlation between the $L$ and the attention scores over cached KV pairs, where a low $L$ of a key embedding leads to a high attention score during decoding.
Our experimental results show that this simple strategy can reduce the KV cache size by 50% on language modelling and needle-in-a-haystack tasks and 90% on passkey retrieval tasks without losing accuracy.
arXiv Detail & Related papers (2024-06-17T11:35:16Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
We introduce an innovative method for optimizing the KV cache, which considerably minimizes its memory footprint.
CORM, a KV cache eviction policy, dynamically retains essential key-value pairs for inference without the need for model fine-tuning.
Our validation shows that CORM reduces the inference memory usage of KV cache by up to 70% with negligible performance degradation across six tasks in LongBench.
arXiv Detail & Related papers (2024-04-24T16:11:54Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
We develop a tuning-free 2bit KV cache quantization algorithm named KIVI.
KIVI can enable Llama, Falcon, and Mistral models to maintain almost the same quality while using $mathbf2.6times$ less peak memory.
arXiv Detail & Related papers (2024-02-05T06:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.