論文の概要: Scalable Model Merging with Progressive Layer-wise Distillation
- arxiv url: http://arxiv.org/abs/2502.12706v1
- Date: Tue, 18 Feb 2025 10:15:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:06:23.571381
- Title: Scalable Model Merging with Progressive Layer-wise Distillation
- Title(参考訳): プログレッシブ層ワイド蒸留によるスケーラブルモデルマージ
- Authors: Jing Xu, Jiazheng Li, Jingzhao Zhang,
- Abstract要約: ProDistill (Progressive Layer-wise Distillation) を導入する。
ProDistillは、視力とNLUタスクの6.14%と6.61%の改善を達成している。
- 参考スコア(独自算出の注目度): 17.521794641817642
- License:
- Abstract: Model merging offers an effective way to integrate the capabilities of multiple fine-tuned models. However, the performance degradation of the merged model remains a challenge, particularly when none or few data are available. This paper first highlights the necessity of domain-specific data for model merging by proving that data-agnostic algorithms can have arbitrarily bad worst-case performance. Building on this theoretical insight, we explore the relationship between model merging and distillation, introducing a novel few-shot merging algorithm, ProDistill (Progressive Layer-wise Distillation). Unlike common belief that layer wise training hurts performance, we show that layer-wise teacher-student distillation not only enhances the scalability but also improves model merging performance. We conduct extensive experiments to show that compared to existing few-shot merging methods, ProDistill achieves state-of-the-art performance, with up to 6.14% and 6.61% improvements in vision and NLU tasks. Furthermore, we extend the experiments to models with over 10B parameters, showcasing the exceptional scalability of ProDistill.
- Abstract(参考訳): モデルマージは、複数の微調整されたモデルの能力を効果的に統合する方法を提供する。
しかし、統合されたモデルの性能劣化は、特にデータがほとんど、あるいはほとんど得られない場合は、依然として困難である。
本稿では、まず、データに依存しないアルゴリズムが任意に悪い最悪の性能を持つことを示すことによって、モデルマージのためのドメイン固有データの必要性を強調した。
この理論的知見に基づいて, モデルマージと蒸留の関係を考察し, 新規な数ショットマージアルゴリズムProDistillを導入する。
レイヤワイズ・トレーニングがパフォーマンスを損なうという一般的な信念とは異なり、レイヤワイズ・教師・学生の蒸留はスケーラビリティを向上するだけでなく、モデルのマージ性能も向上する。
従来の数発のマージ手法と比較して、ProDistillは6.14%と6.61%の視力とNLUタスクの改善を達成している。
さらに,実験を10B以上のパラメータを持つモデルに拡張し,ProDistillの優れた拡張性を示す。
関連論文リスト
- Decouple-Then-Merge: Towards Better Training for Diffusion Models [45.89372687373466]
拡散モデルは、ノイズ破損の各ステップを反転させる一連のモデルを学ぶことで訓練される。
この研究はDeouple-then-Merge(DeMe)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-09T08:19:25Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - The Missing U for Efficient Diffusion Models [3.712196074875643]
拡散確率モデル(Diffusion Probabilistic Models)は、画像合成、ビデオ生成、分子設計などのタスクにおいて、記録破りのパフォーマンスをもたらす。
それらの能力にもかかわらず、その効率、特に逆過程では、収束速度が遅いことと計算コストが高いため、依然として課題である。
本研究では,連続力学系を利用した拡散モデルのための新しいデノナイジングネットワークの設計手法を提案する。
論文 参考訳(メタデータ) (2023-10-31T00:12:14Z) - FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained
Models in Few-Shot Learning [21.693779973263172]
本稿では,特徴識別アライメント(FD-Align)と呼ばれる微調整手法を提案する。
本手法は,突発的特徴の一貫性を保ち,モデルの一般化可能性を高めることを目的としている。
一度微調整すると、モデルは既存のメソッドとシームレスに統合され、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-23T17:12:01Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
本稿では,Adaptive Model Merging (AdaMerging)と呼ばれる革新的な手法を紹介する。
本来のトレーニングデータに頼ることなく、タスクレベルでも階層的にも、モデルマージの係数を自律的に学習することを目指している。
AdaMergingは、現在の最先端のタスク演算のマージ方式と比較すると、パフォーマンスが11%向上している。
論文 参考訳(メタデータ) (2023-10-04T04:26:33Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
そこで、データ多様性を最適化可能な目的として明示的にモデル化するContrastive Model Inversionを提案します。
我々の主な観察では、同じ量のデータの制約の下では、高いデータの多様性は、通常より強いインスタンス識別を示す。
CIFAR-10, CIFAR-100, Tiny-ImageNetを用いた実験により, 生成したデータを知識蒸留に使用する場合, CMIは極めて優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-05-18T15:13:00Z) - Towards Practical Lipreading with Distilled and Efficient Models [57.41253104365274]
ニューラルネットワークの復活により、リリーディングは多くの進歩を目の当たりにした。
最近の研究は、最適なアーキテクチャを見つけるか、一般化を改善することで、パフォーマンスを改善するといった側面に重点を置いている。
現在の方法論と、実践的なシナリオにおける効果的なリップリーディングのデプロイ要件との間には、依然として大きなギャップがあります。
まず, LRW と LRW-1000 をそれぞれ 88.5% と 46.6% に比例して, 最先端の性能を高めることを提案する。
論文 参考訳(メタデータ) (2020-07-13T16:56:27Z) - Learnable Bernoulli Dropout for Bayesian Deep Learning [53.79615543862426]
Learnable Bernoulli Dropout (LBD) は、他のモデルパラメータと共に最適化されたパラメータとしてドロップアウト率を考慮する新しいモデルに依存しないドロップアウトスキームである。
LBDは画像分類とセマンティックセグメンテーションにおける精度と不確実性の推定を改善する。
論文 参考訳(メタデータ) (2020-02-12T18:57:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。