Circuit Representation Learning with Masked Gate Modeling and Verilog-AIG Alignment
- URL: http://arxiv.org/abs/2502.12732v1
- Date: Tue, 18 Feb 2025 10:48:16 GMT
- Title: Circuit Representation Learning with Masked Gate Modeling and Verilog-AIG Alignment
- Authors: Haoyuan Wu, Haisheng Zheng, Yuan Pu, Bei Yu,
- Abstract summary: We introduce MGVGA, a novel constrained masked modeling paradigm incorporating masked gate modeling (MGM) and Verilog-AIG alignment (VGA)
MGM preserves logical equivalence by masking gates in the latent space rather than in the original circuits, subsequently reconstructing the attributes of these masked gates.
Building upon this capability, VGA performs masking operations on original circuits and reconstructs masked gates under the constraints of equivalent Verilog codes.
- Score: 4.383547986717473
- License:
- Abstract: Understanding the structure and function of circuits is crucial for electronic design automation (EDA). Circuits can be formulated as And-Inverter graphs (AIGs), enabling efficient implementation of representation learning through graph neural networks (GNNs). Masked modeling paradigms have been proven effective in graph representation learning. However, masking augmentation to original circuits will destroy their logical equivalence, which is unsuitable for circuit representation learning. Moreover, existing masked modeling paradigms often prioritize structural information at the expense of abstract information such as circuit function. To address these limitations, we introduce MGVGA, a novel constrained masked modeling paradigm incorporating masked gate modeling (MGM) and Verilog-AIG alignment (VGA). Specifically, MGM preserves logical equivalence by masking gates in the latent space rather than in the original circuits, subsequently reconstructing the attributes of these masked gates. Meanwhile, large language models (LLMs) have demonstrated an excellent understanding of the Verilog code functionality. Building upon this capability, VGA performs masking operations on original circuits and reconstructs masked gates under the constraints of equivalent Verilog codes, enabling GNNs to learn circuit functions from LLMs. We evaluate MGVGA on various logic synthesis tasks for EDA and show the superior performance of MGVGA compared to previous state-of-the-art methods. Our code is available at https://github.com/wuhy68/MGVGA.
Related papers
- LASE: Learned Adjacency Spectral Embeddings [7.612218105739107]
We learn nodal Adjacency Spectral Embeddings (ASE) from graph inputs.
LASE is interpretable, parameter efficient, robust to inputs with unobserved edges.
LASE layers combine Graph Convolutional Network (GCN) and fully-connected Graph Attention Network (GAT) modules.
arXiv Detail & Related papers (2024-12-23T17:35:19Z) - How to Make LLMs Strong Node Classifiers? [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, such as Graph Neural Networks (GNNs) and Graph Transformers (GTs)
We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art (SOTA) GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - DeepGate3: Towards Scalable Circuit Representation Learning [9.910071321534682]
Circuit representation learning has shown promising results in advancing the field of Electronic Design Automation (EDA)
Existing models, such as DeepGate Family, primarily utilize Graph Neural Networks (GNNs) to encode circuit netlists into gate-level embeddings.
We introduce DeepGate3, an enhanced architecture that integrates Transformer modules following the initial GNN processing.
arXiv Detail & Related papers (2024-07-15T02:44:21Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
We propose UGMAE, a unified framework for graph masked autoencoders.
We first develop an adaptive feature mask generator to account for the unique significance of nodes.
We then design a ranking-based structure reconstruction objective joint with feature reconstruction to capture holistic graph information.
arXiv Detail & Related papers (2024-02-12T19:39:26Z) - Discrete Morphological Neural Networks [0.0]
We propose the Discrete Morphological Neural Networks (DMNN) for binary image analysis to represent W-operators.
As a proof-of-concept, we apply the DMNN to recognize the boundary of digits with noise.
arXiv Detail & Related papers (2023-09-01T17:04:48Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - Multiscale Graph Neural Network Autoencoders for Interpretable
Scientific Machine Learning [0.0]
The goal of this work is to address two limitations in autoencoder-based models: latent space interpretability and compatibility with unstructured meshes.
This is accomplished here with the development of a novel graph neural network (GNN) autoencoding architecture with demonstrations on complex fluid flow applications.
arXiv Detail & Related papers (2023-02-13T08:47:11Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs [55.66953093401889]
Masked graph autoencoder (MGAE) framework to perform effective learning on graph structure data.
Taking insights from self-supervised learning, we randomly mask a large proportion of edges and try to reconstruct these missing edges during training.
arXiv Detail & Related papers (2022-01-07T16:48:07Z) - Refined Gate: A Simple and Effective Gating Mechanism for Recurrent
Units [68.30422112784355]
We propose a new gating mechanism within general gated recurrent neural networks to handle this issue.
The proposed gates directly short connect the extracted input features to the outputs of vanilla gates.
We verify the proposed gating mechanism on three popular types of gated RNNs including LSTM, GRU and MGU.
arXiv Detail & Related papers (2020-02-26T07:51:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.