DeepGate3: Towards Scalable Circuit Representation Learning
- URL: http://arxiv.org/abs/2407.11095v1
- Date: Mon, 15 Jul 2024 02:44:21 GMT
- Title: DeepGate3: Towards Scalable Circuit Representation Learning
- Authors: Zhengyuan Shi, Ziyang Zheng, Sadaf Khan, Jianyuan Zhong, Min Li, Qiang Xu,
- Abstract summary: Circuit representation learning has shown promising results in advancing the field of Electronic Design Automation (EDA)
Existing models, such as DeepGate Family, primarily utilize Graph Neural Networks (GNNs) to encode circuit netlists into gate-level embeddings.
We introduce DeepGate3, an enhanced architecture that integrates Transformer modules following the initial GNN processing.
- Score: 9.910071321534682
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Circuit representation learning has shown promising results in advancing the field of Electronic Design Automation (EDA). Existing models, such as DeepGate Family, primarily utilize Graph Neural Networks (GNNs) to encode circuit netlists into gate-level embeddings. However, the scalability of GNN-based models is fundamentally constrained by architectural limitations, impacting their ability to generalize across diverse and complex circuit designs. To address these challenges, we introduce DeepGate3, an enhanced architecture that integrates Transformer modules following the initial GNN processing. This novel architecture not only retains the robust gate-level representation capabilities of its predecessor, DeepGate2, but also enhances them with the ability to model subcircuits through a novel pooling transformer mechanism. DeepGate3 is further refined with multiple innovative supervision tasks, significantly enhancing its learning process and enabling superior representation of both gate-level and subcircuit structures. Our experiments demonstrate marked improvements in scalability and generalizability over traditional GNN-based approaches, establishing a significant step forward in circuit representation learning technology.
Related papers
- DeepSeq2: Enhanced Sequential Circuit Learning with Disentangled Representations [9.79382991471473]
We introduce DeepSeq2, a novel framework that enhances the learning of sequential circuits.
By employing an efficient Directed Acyclic Graph Neural Network (DAG-GNN), DeepSeq2 significantly reduces execution times and improves model scalability.
DeepSeq2 sets a new benchmark in sequential circuit representation learning, outperforming prior works in power estimation and reliability analysis.
arXiv Detail & Related papers (2024-11-01T11:57:42Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
Training a high-quality deep neural network requires choosing suitable hyperparameters, which is a non-trivial and expensive process.
In this work, we precisely characterize the dependence of initializations and maximal learning rates on the network architecture.
We demonstrate that network rankings can be easily changed by better training networks in benchmarks.
arXiv Detail & Related papers (2024-02-27T11:52:49Z) - OTOv3: Automatic Architecture-Agnostic Neural Network Training and
Compression from Structured Pruning to Erasing Operators [57.145175475579315]
This topic spans various techniques, from structured pruning to neural architecture search, encompassing both pruning and erasing operators perspectives.
We introduce the third-generation Only-Train-Once (OTOv3), which first automatically trains and compresses a general DNN through pruning and erasing operations.
Our empirical results demonstrate the efficacy of OTOv3 across various benchmarks in structured pruning and neural architecture search.
arXiv Detail & Related papers (2023-12-15T00:22:55Z) - MuseGNN: Interpretable and Convergent Graph Neural Network Layers at
Scale [15.93424606182961]
We propose a sampling-based energy function and scalable GNN layers that iteratively reduce it, guided by convergence guarantees in certain settings.
We also instantiate a full GNN architecture based on these designs, and the model achieves competitive accuracy and scalability when applied to the largest publicly-available node classification benchmark exceeding 1TB in size.
arXiv Detail & Related papers (2023-10-19T04:30:14Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - NAR-Former V2: Rethinking Transformer for Universal Neural Network
Representation Learning [25.197394237526865]
We propose a modified Transformer-based universal neural network representation learning model NAR-Former V2.
Specifically, we take the network as a graph and design a straightforward tokenizer to encode the network into a sequence.
We incorporate the inductive representation learning capability of GNN into Transformer, enabling Transformer to generalize better when encountering unseen architecture.
arXiv Detail & Related papers (2023-06-19T09:11:04Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z) - Refined Gate: A Simple and Effective Gating Mechanism for Recurrent
Units [68.30422112784355]
We propose a new gating mechanism within general gated recurrent neural networks to handle this issue.
The proposed gates directly short connect the extracted input features to the outputs of vanilla gates.
We verify the proposed gating mechanism on three popular types of gated RNNs including LSTM, GRU and MGU.
arXiv Detail & Related papers (2020-02-26T07:51:38Z) - Gating creates slow modes and controls phase-space complexity in GRUs
and LSTMs [5.672132510411465]
We study how the addition of gates influences the dynamics and trainability of GRUs and LSTMs.
We show that the update gate in the GRU and the forget gate in the LSTM can lead to an accumulation of slow modes in the dynamics.
arXiv Detail & Related papers (2020-01-31T19:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.