Green LIME: Improving AI Explainability through Design of Experiments
- URL: http://arxiv.org/abs/2502.12753v1
- Date: Tue, 18 Feb 2025 11:15:04 GMT
- Title: Green LIME: Improving AI Explainability through Design of Experiments
- Authors: Alexandra Stadler, Werner G. Müller, Radoslav Harman,
- Abstract summary: Local Interpretable Model-agnostic Explanations (LIME) provides explanations by generating new data points near the instance of interest and passing them through the model.
LIME is highly versatile and can be applied to a wide range of models and datasets.
By utilizing optimal design of experiments' techniques, we reduce the number of function evaluations of the complex model.
- Score: 44.99833362998488
- License:
- Abstract: In artificial intelligence (AI), the complexity of many models and processes often surpasses human interpretability, making it challenging to understand why a specific prediction is made. This lack of transparency is particularly problematic in critical fields like healthcare, where trust in a model's predictions is paramount. As a result, the explainability of machine learning (ML) and other complex models has become a key area of focus. Efforts to improve model interpretability often involve experimenting with AI systems and approximating their behavior through simpler mechanisms. However, these procedures can be resource-intensive. Optimal design of experiments, which seeks to maximize the information obtained from a limited number of observations, offers promising methods for improving the efficiency of these explainability techniques. To demonstrate this potential, we explore Local Interpretable Model-agnostic Explanations (LIME), a widely used method introduced by Ribeiro, Singh, and Guestrin, 2016. LIME provides explanations by generating new data points near the instance of interest and passing them through the model. While effective, this process can be computationally expensive, especially when predictions are costly or require many samples. LIME is highly versatile and can be applied to a wide range of models and datasets. In this work, we focus on models involving tabular data, regression tasks, and linear models as interpretable local approximations. By utilizing optimal design of experiments' techniques, we reduce the number of function evaluations of the complex model, thereby reducing the computational effort of LIME by a significant amount. We consider this modified version of LIME to be energy-efficient or "green".
Related papers
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Achieving interpretable machine learning by functional decomposition of black-box models into explainable predictor effects [4.3500439062103435]
We propose a novel approach for the functional decomposition of black-box predictions.
Similar to additive regression models, our method provides insights into the direction and strength of the main feature contributions.
arXiv Detail & Related papers (2024-07-26T10:37:29Z) - SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
We propose a novel method to enhance explainability with minimal accuracy loss.
We have developed novel methods for estimating nodes by leveraging AI techniques.
Our findings highlight the critical role that statistical methodologies can play in advancing explainable AI.
arXiv Detail & Related papers (2024-06-16T14:43:01Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
We conduct a systematic comparison of different modelling approaches, across multiple modelling problems, in terms of the key factors likely to affect model choice.
Results indicate that the models with the highest disaggregate predictive performance provide poorer estimates of behavioural indicators and aggregate mode shares.
It is also observed that the MNL model performs robustly in a variety of situations, though ML techniques can improve the estimates of behavioural indices such as Willingness to Pay.
arXiv Detail & Related papers (2023-01-11T11:10:32Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - Locally Interpretable Model Agnostic Explanations using Gaussian
Processes [2.9189409618561966]
Local Interpretable Model-Agnostic Explanations (LIME) is a popular technique for explaining the prediction of a single instance.
We propose a Gaussian Process (GP) based variation of locally interpretable models.
We demonstrate that the proposed technique is able to generate faithful explanations using much fewer samples as compared to LIME.
arXiv Detail & Related papers (2021-08-16T05:49:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.