Achieving interpretable machine learning by functional decomposition of black-box models into explainable predictor effects
- URL: http://arxiv.org/abs/2407.18650v1
- Date: Fri, 26 Jul 2024 10:37:29 GMT
- Title: Achieving interpretable machine learning by functional decomposition of black-box models into explainable predictor effects
- Authors: David Köhler, David Rügamer, Matthias Schmid,
- Abstract summary: We propose a novel approach for the functional decomposition of black-box predictions.
Similar to additive regression models, our method provides insights into the direction and strength of the main feature contributions.
- Score: 4.3500439062103435
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning (ML) has seen significant growth in both popularity and importance. The high prediction accuracy of ML models is often achieved through complex black-box architectures that are difficult to interpret. This interpretability problem has been hindering the use of ML in fields like medicine, ecology and insurance, where an understanding of the inner workings of the model is paramount to ensure user acceptance and fairness. The need for interpretable ML models has boosted research in the field of interpretable machine learning (IML). Here we propose a novel approach for the functional decomposition of black-box predictions, which is considered a core concept of IML. The idea of our method is to replace the prediction function by a surrogate model consisting of simpler subfunctions. Similar to additive regression models, these functions provide insights into the direction and strength of the main feature contributions and their interactions. Our method is based on a novel concept termed stacked orthogonality, which ensures that the main effects capture as much functional behavior as possible and do not contain information explained by higher-order interactions. Unlike earlier functional IML approaches, it is neither affected by extrapolation nor by hidden feature interactions. To compute the subfunctions, we propose an algorithm based on neural additive modeling and an efficient post-hoc orthogonalization procedure.
Related papers
- Mechanism learning: Reverse causal inference in the presence of multiple unknown confounding through front-door causal bootstrapping [0.8901073744693314]
A major limitation of machine learning (ML) prediction models is that they recover associational, rather than causal, predictive relationships between variables.
This paper proposes mechanism learning, a simple method which uses front-door causal bootstrapping to deconfound observational data.
We test our method on fully synthetic, semi-synthetic and real-world datasets, demonstrating that it can discover reliable, unbiased, causal ML predictors.
arXiv Detail & Related papers (2024-10-26T03:34:55Z) - Extrapolative ML Models for Copolymers [1.901715290314837]
Machine learning models have been progressively used for predicting materials properties.
These models are inherently interpolative, and their efficacy for searching candidates outside a material's known range of property is unresolved.
Here, we determine the relationship between the extrapolation ability of an ML model, the size and range of its training dataset, and its learning approach.
arXiv Detail & Related papers (2024-09-15T11:02:01Z) - Decomposing and Editing Predictions by Modeling Model Computation [75.37535202884463]
We introduce a task called component modeling.
The goal of component modeling is to decompose an ML model's prediction in terms of its components.
We present COAR, a scalable algorithm for estimating component attributions.
arXiv Detail & Related papers (2024-04-17T16:28:08Z) - An Explainable Regression Framework for Predicting Remaining Useful Life
of Machines [6.374451442486538]
This paper proposes an explainable regression framework for the prediction of machines' Remaining Useful Life (RUL)
We also evaluate several Machine Learning (ML) algorithms including classical and Neural Networks (NNs) based solutions for the task.
arXiv Detail & Related papers (2022-04-28T15:44:12Z) - Tree-based local explanations of machine learning model predictions,
AraucanaXAI [2.9660372210786563]
A tradeoff between performance and intelligibility is often to be faced, especially in high-stakes applications like medicine.
We propose a novel methodological approach for generating explanations of the predictions of a generic ML model.
arXiv Detail & Related papers (2021-10-15T17:39:19Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
Model-agnostic meta-learning (MAML) is one of the most popular and widely-adopted meta-learning algorithms nowadays.
We provide a new perspective to the working mechanism of MAML and discover that: MAML is analogous to a meta-learner using a supervised contrastive objective function.
We propose a simple but effective technique, zeroing trick, to alleviate such interference.
arXiv Detail & Related papers (2021-06-29T12:52:26Z) - Learning outside the Black-Box: The pursuit of interpretable models [78.32475359554395]
This paper proposes an algorithm that produces a continuous global interpretation of any given continuous black-box function.
Our interpretation represents a leap forward from the previous state of the art.
arXiv Detail & Related papers (2020-11-17T12:39:44Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
We propose a new framework for statistical machine learning of target functions arising as identifiable functionals from statistical models.
This framework is problem- and model-agnostic and can be used to estimate a broad variety of target parameters of interest in applied statistics.
We put particular focus on so-called coarsening at random/doubly robust problems with partially unobserved information.
arXiv Detail & Related papers (2020-08-14T16:48:29Z) - Surrogate Locally-Interpretable Models with Supervised Machine Learning
Algorithms [8.949704905866888]
Supervised Machine Learning algorithms have become popular in recent years due to their superior predictive performance over traditional statistical methods.
The main focus is on interpretability, the resulting surrogate model also has reasonably good predictive performance.
arXiv Detail & Related papers (2020-07-28T23:46:16Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.