論文の概要: Efficient Machine Translation Corpus Generation: Integrating Human-in-the-Loop Post-Editing with Large Language Models
- arxiv url: http://arxiv.org/abs/2502.12755v1
- Date: Tue, 18 Feb 2025 11:16:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:08:13.924761
- Title: Efficient Machine Translation Corpus Generation: Integrating Human-in-the-Loop Post-Editing with Large Language Models
- Title(参考訳): 効率的な機械翻訳コーパス生成:大規模言語モデルによる人文内ポスト編集の統合
- Authors: Kamer Ali Yuksel, Ahmet Gunduz, Abdul Baseet Anees, Hassan Sawaf,
- Abstract要約: 本稿では,機械翻訳コーパス生成のための高度な手法を提案する。
セミオートマチックでヒューマン・イン・ザ・ループのポスト編集と大きな言語モデル(LLM)を統合し、効率性と翻訳品質を向上させる。
- 参考スコア(独自算出の注目度): 4.574830585715128
- License:
- Abstract: This paper introduces an advanced methodology for machine translation (MT) corpus generation, integrating semi-automated, human-in-the-loop post-editing with large language models (LLMs) to enhance efficiency and translation quality. Building upon previous work that utilized real-time training of a custom MT quality estimation metric, this system incorporates novel LLM features such as Enhanced Translation Synthesis and Assisted Annotation Analysis, which improve initial translation hypotheses and quality assessments, respectively. Additionally, the system employs LLM-Driven Pseudo Labeling and a Translation Recommendation System to reduce human annotator workload in specific contexts. These improvements not only retain the original benefits of cost reduction and enhanced post-edit quality but also open new avenues for leveraging cutting-edge LLM advancements. The project's source code is available for community use, promoting collaborative developments in the field. The demo video can be accessed here.
- Abstract(参考訳): 本稿では,機械翻訳(MT)コーパス生成のための高度な手法を導入し,半自動,人間-イン-ループ後編集を大規模言語モデル(LLM)と組み合わせ,効率と翻訳品質を向上させる。
本システムでは,従来のMT品質評価基準のリアルタイムトレーニングを利用して,翻訳合成の強化やアノテーション分析などの新しいLCM機能を導入し,翻訳仮説と品質評価をそれぞれ改善した。
さらに、LLM-Driven Pseudo LabelingとTranslation Recommendation Systemを使用して、特定のコンテキストにおける人間のアノテータの作業量を削減している。
これらの改良は、コスト削減と後処理品質の向上という本来の利点を保ちつつ、最先端のLCMの進歩を活用するための新たな道を開いた。
プロジェクトのソースコードはコミュニティで利用でき、この分野における共同開発を促進する。
デモビデオはここで見ることができる。
関連論文リスト
- A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
大規模言語モデル(LLM)開発における最大の課題は、その面倒な事前トレーニングコストである。
本稿では,小言語モデル(SLM)を活用して,LLMの事前学習効率と品質を改善するための有望なパラダイムについて検討する。
論文 参考訳(メタデータ) (2024-10-24T14:31:52Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
本稿では,自己回帰を通した翻訳を行うTasTeフレームワークを提案する。
WMT22ベンチマークにおける4つの言語方向の評価結果から,既存の手法と比較して,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-06-12T17:21:21Z) - Guiding Large Language Models to Post-Edit Machine Translation with Error Annotations [14.149224539732913]
機械翻訳は、大規模言語モデル(LLM)がまだ専用の教師付きシステムに取って代わっていない最後のNLPタスクの1つである。
この研究はLLMの補完的な強度を利用して、その品質に外部からのフィードバックを伴って、LMを自動で後続MTに誘導する。
中国語・英語・ドイツ語・英語・ロシア語のMQMデータを用いた実験により,LLMのMT後処理によりTER,BLEU,COMETのスコアが向上することが実証された。
微調整はきめ細かいフィードバックをより効果的に統合し、自動評価と人的評価の両方に基づいて翻訳品質を向上させる。
論文 参考訳(メタデータ) (2024-04-11T15:47:10Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
オフターゲット翻訳は、特に低リソース言語では未解決の問題である。
最近の研究は、翻訳命令の機能を強調するために高度なプロンプト戦略を設計するか、LLMの文脈内学習能力を活用している。
本研究では,LLMの命令追従能力(特に翻訳方向)を向上させるために,2段階の微調整アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-03-21T13:47:40Z) - Enhancing Neural Machine Translation of Low-Resource Languages: Corpus
Development, Human Evaluation and Explainable AI Architectures [0.0]
Transformerアーキテクチャは、特に高リソースの言語ペアにおいて、ゴールドスタンダードとして際立っている。
低リソース言語のための並列データセットの不足は、機械翻訳開発を妨げる可能性がある。
この論文では、ニューラルネットワーク翻訳モデルの開発、微調整、デプロイのために合理化された2つのオープンソースアプリケーションであるAdaptNMTとAdaptMLLMを紹介している。
論文 参考訳(メタデータ) (2024-03-03T18:08:30Z) - TEaR: Improving LLM-based Machine Translation with Systematic Self-Refinement [26.26493253161022]
大規模言語モデル(LLM)は機械翻訳(MT)において印象的な結果を得た
我々は,体系的LLMに基づく自己精製翻訳フレームワーク,textbfTEaRを紹介する。
論文 参考訳(メタデータ) (2024-02-26T07:58:12Z) - Lost in the Source Language: How Large Language Models Evaluate the Quality of Machine Translation [64.5862977630713]
本研究では,機械翻訳評価タスクにおいて,Large Language Models (LLM) がソースデータと参照データをどのように活用するかを検討する。
参照情報が評価精度を大幅に向上させるのに対して,意外なことに,ソース情報は時として非生産的である。
論文 参考訳(メタデータ) (2024-01-12T13:23:21Z) - Contextual Refinement of Translations: Large Language Models for Sentence and Document-Level Post-Editing [12.843274390224853]
大規模言語モデル(LLM)は、様々な自然言語処理タスクでかなりの成功を収めている。
ニューラルネットワーク翻訳における最先端性能は,まだ達成できていない。
直接翻訳者ではなく,自動編集者 (APE) としてLLMを適用することを提案する。
論文 参考訳(メタデータ) (2023-10-23T12:22:15Z) - Exploring Human-Like Translation Strategy with Large Language Models [93.49333173279508]
大規模言語モデル(LLM)は、一般的なシナリオにおいて印象的な機能を示している。
本研究は,マルチアスペクト・プロンプトと選択のためのMAPSフレームワークを提案する。
品質推定に基づく選択機構を用いて,ノイズや不ヘッピーな知識を抽出する。
論文 参考訳(メタデータ) (2023-05-06T19:03:12Z) - Non-Parametric Online Learning from Human Feedback for Neural Machine
Translation [54.96594148572804]
本稿では,人間のフィードバックによるオンライン学習の課題について検討する。
従来手法では、高品質な性能を達成するために、オンラインモデル更新や翻訳メモリネットワークの追加が必要であった。
モデル構造を変更することなく、新しい非パラメトリックオンライン学習手法を提案する。
論文 参考訳(メタデータ) (2021-09-23T04:26:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。