Quantum Communication Multiplexing in LP-modes Enabled by Photonic Lanterns
- URL: http://arxiv.org/abs/2502.12865v1
- Date: Tue, 18 Feb 2025 13:52:33 GMT
- Title: Quantum Communication Multiplexing in LP-modes Enabled by Photonic Lanterns
- Authors: I. Beraza, M. Zahidy, R. Mueller, N. M. Mathew, L. Grüner-Nielsen, L. S. Rishøj, L. K. Oxenløwe, M. Galili,
- Abstract summary: This work demonstrates a fiber-based Quantum Key Distribution (QKD) system employing LP mode multiplexing with a photonic lantern.
We report a SKR of 2.34 Mbps over a 24 km 5dB loss fiber link.
- Score: 0.0
- License:
- Abstract: The non-cloning theorem of quantum states provides security, but also limits the Secret Key Rate (SKR) for Quantum Key Distribution (QKD) implementations. Multiplexing is a widely used technique to enhance data rates in classical communication systems and can also increase the SKR in QKD systems. Using linearly polarized (LP) modes is an attractive solution as it is compatible with simple fiber designs. This work demonstrates a fiber-based QKD system employing LP mode multiplexing with a photonic lantern to convert the fundamental mode ($LP_{01}$) in separate fibers into higher-order modes ($LP_{11}$) in a single few-mode fiber. The performance of the system is sensitive to polarization dependence, mode alignment, and environmental crosstalk, which requires precise polarization control to minimize Quantum Bit Error Rate (QBER). We report a SKR of 2.34 Mbps over a 24 km 5dB loss fiber link.
Related papers
- Polarization-encoded quantum key distribution with a room-temperature telecom single-photon emitter [47.54990103162742]
Single photon sources (SPSs) are directly applicable in quantum key distribution (QKD)
We report an observation of polarization-encoded QKD using a room-temperature telecom SPS based on a GaN defect.
arXiv Detail & Related papers (2024-09-25T16:17:36Z) - Practical security of twin-field quantum key distribution with optical phase-locked loop under wavelength-switching attack [8.199460413072904]
We demonstrate a wavelength-switching attack on a TF-class QKD system.
The maximum observed increase in mean photon number is 8.7%, which has been theoretically proven to compromise the security of a TF-class QKD system.
We highlight the importance of system calibration in the practical security in TF-class QKD implementation.
arXiv Detail & Related papers (2024-08-18T00:38:13Z) - Two-mode squeezing over deployed fiber coexisting with conventional
communications [55.41644538483948]
Multi-mode squeezing is critical for enabling CV quantum networks and distributed quantum sensing.
To date, multi-mode squeezing measured by homodyne detection has been limited to single-room experiments.
This demonstration enables future applications in quantum networks and quantum sensing that rely on distributed multi-mode squeezing.
arXiv Detail & Related papers (2023-04-20T02:29:33Z) - Twin-field quantum key distribution without phase locking [18.013181607967322]
We show an approach to recover the single-photon interference pattern and realize TF-QKD emphwithout phase locking.
Our work provides a scalable and practical solution to TF-QKD, thus representing an important step towards its wide applications.
arXiv Detail & Related papers (2022-12-08T15:03:12Z) - Polarization correction towards satellite-based QKD without an active
feedback [5.5438676149999075]
Quantum key distribution (QKD) is a cryptographic protocol to enable two parties to share a secure key string.
There has been an ongoing surge of interest in implementing long-haul photonic-implementation of QKD protocols.
We propose an alternative approach where we first perform a state tomography to reconstruct the output density matrix.
arXiv Detail & Related papers (2022-08-19T02:20:38Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Fibre polarization state compensation in entanglement-based quantum key
distribution [62.997667081978825]
Quantum Key Distribution (QKD) using polarisation encoding can be hard to implement over deployed telecom fibres.
We show a technique for dynamically compensating fibre-induced alteration in a QKD system over deployed fibre.
arXiv Detail & Related papers (2021-07-16T00:53:48Z) - Interleaving: Modular architectures for fault-tolerant photonic quantum
computing [50.591267188664666]
Photonic fusion-based quantum computing (FBQC) uses low-loss photonic delays.
We present a modular architecture for FBQC in which these components are combined to form "interleaving modules"
Exploiting the multiplicative power of delays, each module can add thousands of physical qubits to the computational Hilbert space.
arXiv Detail & Related papers (2021-03-15T18:00:06Z) - Stable Polarization Entanglement based Quantum Key Distribution over
Metropolitan Fibre Network [55.41644538483948]
We demonstrate a quantum key distribution implementation over deployed dark telecom fibers with polarisation-entangled photons generated at the O-band.
One of the photons in the pairs are propagated through 10km of deployed fiber while the others are detected locally.
This ensures continuous and stable QKD operation with an average QBER of 6.4% and a final key rate of 109 bits/s.
arXiv Detail & Related papers (2020-07-04T02:36:57Z) - Long-distance transmission of quantum key distribution coexisting with
classical optical communication over weakly-coupled few-mode fiber [13.259161549224265]
Quantum key distribution (QKD) is one of the most practical applications in quantum information processing.
We present for the first time a QKD implementation coexisting with classical optical communication over weakly-coupled FMF.
Co-propagation of QKD with one 100 Gbps classical data channel at -2.60 dBm launched power is achieved over 86 km FMF with 1.3 kbps real-time secure key generation.
arXiv Detail & Related papers (2020-02-02T15:58:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.