Graph Neural Networks for Databases: A Survey
- URL: http://arxiv.org/abs/2502.12908v2
- Date: Wed, 19 Feb 2025 05:09:09 GMT
- Title: Graph Neural Networks for Databases: A Survey
- Authors: Ziming Li, Youhuan Li, Yuyu Luo, Guoliang Li, Chuxu Zhang,
- Abstract summary: Graph computation networks (GNNs) are powerful deep learning models for graph data, demonstrating remarkable success across diverse domains.
Recently, the database (DB) community has increasingly recognized the potentiality of GNNs, prompting a surge of researches focusing on improving database systems through GNN-based approaches.
This survey aims to bridge this gap by providing a structured and in-depth overview of GNNs for DB systems.
- Score: 40.25404188975937
- License:
- Abstract: Graph neural networks (GNNs) are powerful deep learning models for graph-structured data, demonstrating remarkable success across diverse domains. Recently, the database (DB) community has increasingly recognized the potentiality of GNNs, prompting a surge of researches focusing on improving database systems through GNN-based approaches. However, despite notable advances, There is a lack of a comprehensive review and understanding of how GNNs could improve DB systems. Therefore, this survey aims to bridge this gap by providing a structured and in-depth overview of GNNs for DB systems. Specifically, we propose a new taxonomy that classifies existing methods into two key categories: (1) Relational Databases, which includes tasks like performance prediction, query optimization, and text-to-SQL, and (2) Graph Databases, addressing challenges like efficient graph query processing and graph similarity computation. We systematically review key methods in each category, highlighting their contributions and practical implications. Finally, we suggest promising avenues for integrating GNNs into Database systems.
Related papers
- RelGNN: Composite Message Passing for Relational Deep Learning [56.48834369525997]
We introduce RelGNN, a novel GNN framework specifically designed to capture the unique characteristics of relational databases.
At the core of our approach is the introduction of atomic routes, which are sequences of nodes forming high-order tripartite structures.
RelGNN consistently achieves state-of-the-art accuracy with up to 25% improvement.
arXiv Detail & Related papers (2025-02-10T18:58:40Z) - Top Ten Challenges Towards Agentic Neural Graph Databases [56.92578700681306]
Graph databases (GDBs) like Neo4j and TigerGraph excel at handling interconnected data but lack advanced inference capabilities.
This paper introduces Agentic Neural Graph Databases (Agentic NGDBs), which extend NGDBs with three core functionalities.
arXiv Detail & Related papers (2025-01-24T04:06:50Z) - The Evolution of Distributed Systems for Graph Neural Networks and their
Origin in Graph Processing and Deep Learning: A Survey [17.746899445454048]
Graph Neural Networks (GNNs) are an emerging research field.
GNNs can be applied to various domains including recommendation systems, computer vision, natural language processing, biology and chemistry.
We aim to fill this gap by summarizing and categorizing important methods and techniques for large-scale GNN solutions.
arXiv Detail & Related papers (2023-05-23T09:22:33Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
Graph Neural Networks (GNNs) are effective tools for graph representation learning.
We propose a retrieval-enhanced scheme called GRAPHRETRIEVAL, which is agnostic to the choice of graph neural network models.
We conduct comprehensive experiments over 13 datasets, and we observe that GRAPHRETRIEVAL is able to reach substantial improvements over existing GNNs.
arXiv Detail & Related papers (2022-06-01T09:59:09Z) - GPN: A Joint Structural Learning Framework for Graph Neural Networks [36.38529113603987]
We propose a GNN-based joint learning framework that simultaneously learns the graph structure and the downstream task.
Our method is the first GNN-based bilevel optimization framework for resolving this task.
arXiv Detail & Related papers (2022-05-12T09:06:04Z) - Pooling Architecture Search for Graph Classification [36.728077433219916]
Graph neural networks (GNNs) are designed to learn node-level representation based on neighborhood aggregation schemes.
Pooling methods are applied after the aggregation operation to generate coarse-grained graphs.
It is a challenging problem to design a universal pooling architecture to perform well in most cases.
We propose to use neural architecture search (NAS) to search for adaptive pooling architectures for graph classification.
arXiv Detail & Related papers (2021-08-24T09:03:03Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.