Fake It Till You Make It: Using Synthetic Data and Domain Knowledge for Improved Text-Based Learning for LGE Detection
- URL: http://arxiv.org/abs/2502.12948v1
- Date: Tue, 18 Feb 2025 15:30:48 GMT
- Title: Fake It Till You Make It: Using Synthetic Data and Domain Knowledge for Improved Text-Based Learning for LGE Detection
- Authors: Athira J Jacob, Puneet Sharma, Daniel Rueckert,
- Abstract summary: We use strategies rooted in domain knowledge to train a model for LGE detection using text from clinical reports.
We standardize the orientation of the images in an anatomy-informed way to enable better alignment of spatial and text features.
ablation studies are carried out to elucidate the contributions of each design component to the overall performance of the model.
- Score: 11.532639713283226
- License:
- Abstract: Detection of hyperenhancement from cardiac LGE MRI images is a complex task requiring significant clinical expertise. Although deep learning-based models have shown promising results for the task, they require large amounts of data with fine-grained annotations. Clinical reports generated for cardiac MR studies contain rich, clinically relevant information, including the location, extent and etiology of any scars present. Although recently developed CLIP-based training enables pretraining models with image-text pairs, it requires large amounts of data and further finetuning strategies on downstream tasks. In this study, we use various strategies rooted in domain knowledge to train a model for LGE detection solely using text from clinical reports, on a relatively small clinical cohort of 965 patients. We improve performance through the use of synthetic data augmentation, by systematically creating scar images and associated text. In addition, we standardize the orientation of the images in an anatomy-informed way to enable better alignment of spatial and text features. We also use a captioning loss to enable fine-grained supervision and explore the effect of pretraining of the vision encoder on performance. Finally, ablation studies are carried out to elucidate the contributions of each design component to the overall performance of the model.
Related papers
- Less is more: Ensemble Learning for Retinal Disease Recognition Under
Limited Resources [12.119196313470887]
This paper introduces a novel ensemble learning mechanism designed for recognizing retinal diseases under limited resources.
The mechanism leverages insights from multiple pre-trained models, facilitating the transfer and adaptation of their knowledge to Retinal OCT images.
arXiv Detail & Related papers (2024-02-15T06:58:25Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
We propose a novel framework leveraging domain-specific medical knowledge as guiding signals to integrate language information into the visual domain through image-text contrastive learning.
Our model includes global contrastive learning with our designed divergence encoder, local token-knowledge-patch alignment contrastive learning, and knowledge-guided category-level contrastive learning with expert knowledge.
Notably, MLIP surpasses state-of-the-art methods even with limited annotated data, highlighting the potential of multimodal pre-training in advancing medical representation learning.
arXiv Detail & Related papers (2024-02-03T05:48:50Z) - Leveraging Semi-Supervised Graph Learning for Enhanced Diabetic
Retinopathy Detection [0.0]
Diabetic Retinopathy (DR) is a significant cause of blindness globally, highlighting the urgent need for early detection and effective treatment.
Recent advancements in Machine Learning (ML) techniques have shown promise in DR detection, but the availability of labeled data often limits their performance.
This research proposes a novel Semi-Supervised Graph Learning SSGL algorithm tailored for DR detection.
arXiv Detail & Related papers (2023-09-02T04:42:08Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
We introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images.
Our approach fuses image and textual data to enhance the generation process.
We achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
arXiv Detail & Related papers (2023-09-01T22:08:32Z) - Text-guided Foundation Model Adaptation for Pathological Image
Classification [40.45252665455015]
We propose to connect image and text Embeddings (CITE) to enhance pathological image classification.
CITE injects text insights gained from language models pre-trained with a broad range of biomedical texts, leading to adapt foundation models towards pathological image understanding.
arXiv Detail & Related papers (2023-07-27T14:44:56Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - RadTex: Learning Efficient Radiograph Representations from Text Reports [7.090896766922791]
We build a data-efficient learning framework that utilizes radiology reports to improve medical image classification performance with limited labeled data.
Our model achieves higher classification performance than ImageNet-supervised pretraining when labeled training data is limited.
arXiv Detail & Related papers (2022-08-05T15:06:26Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.