論文の概要: Task-Informed Anti-Curriculum by Masking Improves Downstream Performance on Text
- arxiv url: http://arxiv.org/abs/2502.12953v1
- Date: Tue, 18 Feb 2025 15:36:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:09:19.361138
- Title: Task-Informed Anti-Curriculum by Masking Improves Downstream Performance on Text
- Title(参考訳): マスキングによるタスクインフォーム反カリキュラムによるテキストのダウンストリーム性能向上
- Authors: Andrei Jarca, Florinel Alin Croitoru, Radu Tudor Ionescu,
- Abstract要約: マスケッド言語モデリングは、事前訓練言語モデルの教師なし手法として広く採用されている。
本稿では,新しいタスク情報を用いた反カリキュラム学習手法に基づいて,マスキング率を調整し,マスクするトークンを決定することを提案する。
- 参考スコア(独自算出の注目度): 27.320746607958142
- License:
- Abstract: Masked language modeling has become a widely adopted unsupervised technique to pre-train language models. However, the process of selecting tokens for masking is random, and the percentage of masked tokens is typically fixed for the entire training process. In this paper, we propose to adjust the masking ratio and to decide which tokens to mask based on a novel task-informed anti-curriculum learning scheme. First, we harness task-specific knowledge about useful and harmful tokens in order to determine which tokens to mask. Second, we propose a cyclic decaying masking ratio, which corresponds to an anti-curriculum schedule (from hard to easy). We exemplify our novel task-informed anti-curriculum by masking (TIACBM) approach across three diverse downstream tasks: sentiment analysis, text classification by topic, and authorship attribution. Our findings suggest that TIACBM enhances the ability of the model to focus on key task-relevant features, contributing to statistically significant performance gains across tasks. We release our code at https://github.com/JarcaAndrei/TIACBM.
- Abstract(参考訳): マスケッド言語モデリングは、事前訓練言語モデルの教師なし手法として広く採用されている。
しかしながら、マスク用のトークンを選択するプロセスはランダムであり、マスクされたトークンの割合は通常、トレーニングプロセス全体に対して固定される。
本稿では,新しいタスク情報を用いた反カリキュラム学習方式に基づいて,マスキング率を調整し,マスクするトークンを決定することを提案する。
まず,有益かつ有害なトークンに関するタスク固有の知識を利用して,どのトークンをマスクするかを決定する。
第二に、循環減衰マスキング比を提案し、これは(困難から容易まで)反キュリキュラムスケジュールに対応する。
我々は、感情分析、トピックごとのテキスト分類、著者属性の3つの下流タスクにまたがる、新しいタスクインフォームド・アンチ・キュリキュラム(TIACBM)アプローチを実証する。
この結果から,TIACBMはタスク関連機能に重きを置く能力を高め,タスク間の統計的に有意なパフォーマンス向上に寄与することが示唆された。
コードをhttps://github.com/JarcaAndrei/TIACBMでリリースします。
関連論文リスト
- Downstream Task Guided Masking Learning in Masked Autoencoders Using
Multi-Level Optimization [42.82742477950748]
Masked Autoencoder (MAE) は視覚表現学習における自己教師付き事前学習のための重要な手法である。
プリトレーニング中に最適なマスキング戦略を学習する新しいフレームワークであるMulti-level Optimized Mask Autoencoder (MLO-MAE)を紹介する。
視覚表現学習におけるMLO-MAEの進歩について検討した。
論文 参考訳(メタデータ) (2024-02-28T07:37:26Z) - CL-MAE: Curriculum-Learned Masked Autoencoders [49.24994655813455]
本稿では,自己指導型再建作業の複雑さを継続的に増大させるために,マスキング戦略を更新するカリキュラム学習手法を提案する。
我々は、ImageNet上でCL-MAE(Curriculum-Learned Masked Autoencoder)をトレーニングし、MAEよりも優れた表現学習能力を示すことを示す。
論文 参考訳(メタデータ) (2023-08-31T09:13:30Z) - Masked Autoencoding for Scalable and Generalizable Decision Making [93.84855114717062]
MaskDPは、強化学習と行動クローンのためのシンプルでスケーラブルな自己教師付き事前学習手法である。
我々は,MaskDPモデルにより,単一ゴールや複数ゴール到達といった新しいBCタスクへのゼロショット転送能力が得られることを発見した。
論文 参考訳(メタデータ) (2022-11-23T07:04:41Z) - AdaMAE: Adaptive Masking for Efficient Spatiotemporal Learning with
Masked Autoencoders [44.87786478095987]
Masked Autoencodersは、画像、テキスト、オーディオ、ビデオなどの一般的な表現を、可視データのトークンからマスクされた入力データによって学習する。
本稿では,エンド・ツー・エンドのトレーニングが可能なMAEに対する適応型マスキング戦略を提案する。
AdaMAEは補助サンプリングネットワークを用いて意味的コンテキストに基づいて可視トークンをサンプリングする。
論文 参考訳(メタデータ) (2022-11-16T18:59:48Z) - What to Hide from Your Students: Attention-Guided Masked Image Modeling [32.402567373491834]
画像トークンマスキングは、テキストのトークンマスキングと根本的に異なる。
注意誘導マスキング(AttMask)と呼ばれる新しいマスキング戦略を導入する。
論文 参考訳(メタデータ) (2022-03-23T20:52:50Z) - Open-Vocabulary Instance Segmentation via Robust Cross-Modal
Pseudo-Labeling [61.03262873980619]
Open-vocabularyのインスタンスセグメンテーションは、マスクアノテーションなしで新しいクラスをセグメンテーションすることを目的としている。
本研究では,字幕内の単語の意味を画像中のオブジェクトマスクの視覚的特徴と整合させることで,擬似マスクの訓練を行うクロスモーダルな擬似ラベルフレームワークを提案する。
我々のフレームワークは、生徒の自己学習のための単語意味論を通じて、キャプションに新しいクラスをラベル付けすることができる。
論文 参考訳(メタデータ) (2021-11-24T18:50:47Z) - Data Efficient Masked Language Modeling for Vision and Language [16.95631509102115]
Masked Language Modeling (MLM) は視覚言語訓練における重要なサブタスクの1つである。
クロスモーダル設定では、文中のトークンはランダムにマスキングされ、モデルは画像とテキストが与えられたマスキングトークンを予測する。
これらの欠点に対処するクロスモーダル設定に特有な代替マスキング戦略について検討する。
論文 参考訳(メタデータ) (2021-09-05T11:27:53Z) - Neural Mask Generator: Learning to Generate Adaptive Word Maskings for
Language Model Adaptation [63.195935452646815]
本稿では,自己教師付き事前学習のためのテキストのドメイン適応マスキングとタスク適応マスキングを自動生成する手法を提案する。
本稿では,マスキング政策を学習する新しい強化学習フレームワークを提案する。
我々はいくつかの質問応答とテキスト分類データセットに基づいてニューラルマスク生成器(NMG)を検証する。
論文 参考訳(メタデータ) (2020-10-06T13:27:01Z) - Masking as an Efficient Alternative to Finetuning for Pretrained
Language Models [49.64561153284428]
我々は、微調整によって修正する代わりに、事前訓練された重量に対する選択的な二乗マスクを学習する。
内在的評価では、マスキング言語モデルによって計算された表現が、下流タスクの解決に必要な情報を符号化していることを示す。
論文 参考訳(メタデータ) (2020-04-26T15:03:47Z) - Train No Evil: Selective Masking for Task-Guided Pre-Training [97.03615486457065]
一般的な事前学習と微調整の間を選択的にマスキングするタスク誘導事前学習段階を付加した3段階のフレームワークを提案する。
提案手法は,50%未満のコストで同等あるいはさらに優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2020-04-21T03:14:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。