Towards Variational Flow Matching on General Geometries
- URL: http://arxiv.org/abs/2502.12981v1
- Date: Tue, 18 Feb 2025 16:02:10 GMT
- Title: Towards Variational Flow Matching on General Geometries
- Authors: Olga Zaghen, Floor Eijkelboom, Alison Pouplin, Erik J. Bekkers,
- Abstract summary: RG-VFM captures geometric structure more effectively than Euclidean VFM and baseline methods.
It is a robust framework for manifold-aware generative modeling.
- Score: 7.5684697258210685
- License:
- Abstract: We introduce Riemannian Gaussian Variational Flow Matching (RG-VFM), an extension of Variational Flow Matching (VFM) that leverages Riemannian Gaussian distributions for generative modeling on structured manifolds. We derive a variational objective for probability flows on manifolds with closed-form geodesics, making RG-VFM comparable - though fundamentally different to Riemannian Flow Matching (RFM) in this geometric setting. Experiments on a checkerboard dataset wrapped on the sphere demonstrate that RG-VFM captures geometric structure more effectively than Euclidean VFM and baseline methods, establishing it as a robust framework for manifold-aware generative modeling.
Related papers
- RMLR: Extending Multinomial Logistic Regression into General Geometries [64.16104856124029]
Our framework only requires minimal geometric properties, thus exhibiting broad applicability.
We develop five families of SPD MLRs under five types of power-deformed metrics.
On rotation matrices we propose Lie MLR based on the popular bi-invariant metric.
arXiv Detail & Related papers (2024-09-28T18:38:21Z) - Sigma Flows for Image and Data Labeling and Learning Structured Prediction [2.4699742392289]
This paper introduces the sigma flow model for the prediction of structured labelings of data observed on Riemannian manifold.
The approach combines the Laplace-Beltrami framework for image denoising and enhancement, introduced by Sochen, Kimmel and Malladi about 25 years ago, and the assignment flow approach introduced and studied by the authors.
arXiv Detail & Related papers (2024-08-28T17:04:56Z) - Categorical Flow Matching on Statistical Manifolds [12.646272756981672]
We introduce a flow-matching framework on the manifold of parameterized probability measures inspired by information geometry.
We develop an efficient training and sampling algorithm that overcomes numerical stability with a diffeomorphism between manifold.
We manifest that SFM can learn more complex patterns on the statistical manifold where existing models often fail due to strong prior assumptions.
arXiv Detail & Related papers (2024-05-26T05:50:39Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
We show that our method enables us to scale to high dimensional tasks on nontrivial manifold.
We model QCD densities on $SU(n)$ lattices and contrastively learned embeddings on high dimensional hyperspheres.
arXiv Detail & Related papers (2023-10-30T21:27:53Z) - A Geometric Insight into Equivariant Message Passing Neural Networks on
Riemannian Manifolds [1.0878040851638]
We argue that the metric attached to a coordinate-independent feature field should optimally preserve the principal bundle's original metric.
We obtain a message passing scheme on the manifold by discretizing the diffusion equation flow for a fixed time step.
The discretization of the higher-order diffusion process on a graph yields a new general class of equivariant GNN.
arXiv Detail & Related papers (2023-10-16T14:31:13Z) - Manifold Diffusion Fields [11.4726574705951]
We present an approach that unlocks learning of diffusion models of data in non-Euclidean geometries.
We define an intrinsic coordinate system on the manifold via the eigen-functions of the Laplace-Beltrami Operator.
We show that MDF can capture distributions of such functions with better diversity and fidelity than previous approaches.
arXiv Detail & Related papers (2023-05-24T21:42:45Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
In Bayesian structure learning, we are interested in inferring a distribution over the directed acyclic graph (DAG) from data.
Recently, a class of probabilistic models, called Generative Flow Networks (GFlowNets), have been introduced as a general framework for generative modeling.
We show that our approach, called DAG-GFlowNet, provides an accurate approximation of the posterior over DAGs.
arXiv Detail & Related papers (2022-02-28T15:53:10Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) is a new class of generative models within the family of continuous normalizing flows (CNF)
MF does not require invoking or backpropagating through an ODE solver during training.
We demonstrate for the first time the use of flow models for sampling from general curved surfaces.
arXiv Detail & Related papers (2021-08-18T09:00:24Z) - Equivariant Manifold Flows [48.21296508399746]
We lay the theoretical foundations for learning symmetry-invariant distributions on arbitrary manifold via equivariant manifold flows.
We demonstrate the utility of our approach by using it to learn gauge invariant densities over $SU(n)$ in the context of quantum field theory.
arXiv Detail & Related papers (2021-07-19T03:04:44Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
A complete recipe of measure-preserving diffusions in Euclidean space was recently derived unifying several MCMC algorithms into a single framework.
We develop a geometric theory that improves and generalises this construction to any manifold.
arXiv Detail & Related papers (2021-05-06T17:36:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.