Manifold Diffusion Fields
- URL: http://arxiv.org/abs/2305.15586v2
- Date: Sat, 20 Jan 2024 01:14:06 GMT
- Title: Manifold Diffusion Fields
- Authors: Ahmed A. Elhag, Yuyang Wang, Joshua M. Susskind, Miguel Angel Bautista
- Abstract summary: We present an approach that unlocks learning of diffusion models of data in non-Euclidean geometries.
We define an intrinsic coordinate system on the manifold via the eigen-functions of the Laplace-Beltrami Operator.
We show that MDF can capture distributions of such functions with better diversity and fidelity than previous approaches.
- Score: 11.4726574705951
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Manifold Diffusion Fields (MDF), an approach that unlocks learning
of diffusion models of data in general non-Euclidean geometries. Leveraging
insights from spectral geometry analysis, we define an intrinsic coordinate
system on the manifold via the eigen-functions of the Laplace-Beltrami
Operator. MDF represents functions using an explicit parametrization formed by
a set of multiple input-output pairs. Our approach allows to sample continuous
functions on manifolds and is invariant with respect to rigid and isometric
transformations of the manifold. In addition, we show that MDF generalizes to
the case where the training set contains functions on different manifolds.
Empirical results on multiple datasets and manifolds including challenging
scientific problems like weather prediction or molecular conformation show that
MDF can capture distributions of such functions with better diversity and
fidelity than previous approaches.
Related papers
- Pullback Flow Matching on Data Manifolds [10.187244125099479]
Pullback Flow Matching (PFM) is a framework for generative modeling on data manifold.
We demonstrate PFM's effectiveness through applications in synthetic, data dynamics and protein sequence data, generating novel proteins with specific properties.
This method shows strong potential for drug discovery and materials science, where generating novel samples with specific properties is of great interest.
arXiv Detail & Related papers (2024-10-06T16:41:26Z) - Categorical Flow Matching on Statistical Manifolds [12.646272756981672]
We introduce a flow-matching framework on the manifold of parameterized probability measures inspired by information geometry.
We develop an efficient training and sampling algorithm that overcomes numerical stability with a diffeomorphism between manifold.
We manifest that SFM can learn more complex patterns on the statistical manifold where existing models often fail due to strong prior assumptions.
arXiv Detail & Related papers (2024-05-26T05:50:39Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
We show that our method enables us to scale to high dimensional tasks on nontrivial manifold.
We model QCD densities on $SU(n)$ lattices and contrastively learned embeddings on high dimensional hyperspheres.
arXiv Detail & Related papers (2023-10-30T21:27:53Z) - A Geometric Insight into Equivariant Message Passing Neural Networks on
Riemannian Manifolds [1.0878040851638]
We argue that the metric attached to a coordinate-independent feature field should optimally preserve the principal bundle's original metric.
We obtain a message passing scheme on the manifold by discretizing the diffusion equation flow for a fixed time step.
The discretization of the higher-order diffusion process on a graph yields a new general class of equivariant GNN.
arXiv Detail & Related papers (2023-10-16T14:31:13Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
We introduce a principled framework for building a generative diffusion process on general manifold.
Instead of following the denoising approach of previous diffusion models, we construct a diffusion process using a mixture of bridge processes.
We develop a geometric understanding of the mixture process, deriving the drift as a weighted mean of tangent directions to the data points.
arXiv Detail & Related papers (2023-10-11T06:04:40Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
We propose a more general heat kernel based manifold embedding method that we call heat geodesic embeddings.
Results show that our method outperforms existing state of the art in preserving ground truth manifold distances.
We also showcase our method on single cell RNA-sequencing datasets with both continuum and cluster structure.
arXiv Detail & Related papers (2023-05-30T13:58:50Z) - Convolutional Filtering on Sampled Manifolds [122.06927400759021]
We show that convolutional filtering on a sampled manifold converges to continuous manifold filtering.
Our findings are further demonstrated empirically on a problem of navigation control.
arXiv Detail & Related papers (2022-11-20T19:09:50Z) - The Manifold Scattering Transform for High-Dimensional Point Cloud Data [16.500568323161563]
We present practical schemes for implementing the manifold scattering transform to datasets arising in naturalistic systems.
We show that our methods are effective for signal classification and manifold classification tasks.
arXiv Detail & Related papers (2022-06-21T02:15:00Z) - Measuring dissimilarity with diffeomorphism invariance [94.02751799024684]
We introduce DID, a pairwise dissimilarity measure applicable to a wide range of data spaces.
We prove that DID enjoys properties which make it relevant for theoretical study and practical use.
arXiv Detail & Related papers (2022-02-11T13:51:30Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
We develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data.
Our algorithms are validated extensively on synthetic and real-world datasets.
arXiv Detail & Related papers (2021-10-12T02:21:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.