Eager Updates For Overlapped Communication and Computation in DiLoCo
- URL: http://arxiv.org/abs/2502.12996v1
- Date: Tue, 18 Feb 2025 16:16:14 GMT
- Title: Eager Updates For Overlapped Communication and Computation in DiLoCo
- Authors: Satyen Kale, Arthur Douillard, Yanislav Donchev,
- Abstract summary: Distributed optimization methods such as DiLoCo have been shown to be effective in training very large models across multiple workers.
We show that a particular variant, dubbed eager updates, provides competitive performance with standard DiLoCo in settings with low bandwidth between workers.
- Score: 15.965441412725808
- License:
- Abstract: Distributed optimization methods such as DiLoCo have been shown to be effective in training very large models across multiple distributed workers, such as datacenters. These methods split updates into two parts: an inner optimization phase, where the workers independently execute multiple optimization steps on their own local data, and an outer optimization step, where the inner updates are synchronized. While such approaches require orders of magnitude less communication than standard data-parallel training, in settings where the workers are datacenters, even the limited communication requirements of these approaches can still cause significant slow downs due to the blocking necessary at each outer optimization step. In this paper, we investigate techniques to mitigate this issue by overlapping communication with computation in a manner that allows the outer optimization step to fully overlap with the inner optimization phase. We show that a particular variant, dubbed eager updates, provides competitive performance with standard DiLoCo in settings with low bandwidth between workers.
Related papers
- Efficient Distributed Optimization under Heavy-Tailed Noise [32.96984712007111]
TailOPT is designed to address heavy-tailed noise with potentially gradient variance and local updates.
$Bi2Clip$ performs coordinate-wise clipping at both the inner and outers, achieving adaptive-like performance.
$Bi2Clip$ demonstrates superior performance on several language tasks and models, outperforming state-of-the-art methods.
arXiv Detail & Related papers (2025-02-06T15:47:18Z) - High-Dimensional Distributed Sparse Classification with Scalable Communication-Efficient Global Updates [50.406127962933915]
We develop solutions to problems which enable us to learn a communication-efficient distributed logistic regression model.
In our experiments we demonstrate a large improvement in accuracy over distributed algorithms with only a few distributed update steps needed.
arXiv Detail & Related papers (2024-07-08T19:34:39Z) - ACCO: Accumulate while you Communicate, Hiding Communications in Distributed LLM Training [16.560270624096706]
We propose a memory-efficient optimization algorithm tailored for distributed training of Large Language Models.
Our method relies on a novel technique to mitigate the one-step delay inherent in parallel execution of gradient computations and communications.
arXiv Detail & Related papers (2024-06-03T08:23:45Z) - Controllable Prompt Tuning For Balancing Group Distributional Robustness [53.336515056479705]
We introduce an optimization scheme to achieve good performance across groups and find a good solution for all without severely sacrificing performance on any of them.
We propose Controllable Prompt Tuning (CPT), which couples our approach with prompt-tuning techniques.
On spurious correlation benchmarks, our procedures achieve state-of-the-art results across both transformer and non-transformer architectures, as well as unimodal and multimodal data.
arXiv Detail & Related papers (2024-03-05T06:23:55Z) - DiLoCo: Distributed Low-Communication Training of Language Models [32.15083548875492]
Large language models (LLM) have been a critical component in many applications of machine learning.
Standard approaches to training LLM require a large number of interconnected accelerators.
We propose a distributed optimization algorithm, Distributed Low-Communication (DiLoCo), that enables training of language models on islands of devices that are poorly connected.
arXiv Detail & Related papers (2023-11-14T12:05:45Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Straggler-Resilient Decentralized Learning via Adaptive Asynchronous Updates [28.813671194939225]
fully decentralized optimization methods have been advocated as alternatives to the popular parameter server framework.
We propose a fully decentralized algorithm with adaptive asynchronous updates via adaptively determining the number of neighbor workers for each worker to communicate with.
We show that DSGD-AAU achieves a linear speedup for convergence and demonstrate its effectiveness via extensive experiments.
arXiv Detail & Related papers (2023-06-11T02:08:59Z) - TAMUNA: Doubly Accelerated Distributed Optimization with Local Training, Compression, and Partial Participation [53.84175614198885]
In distributed optimization and learning, several machines alternate between local computations in parallel and communication with a distant server.
We propose TAMUNA, the first algorithm for distributed optimization that leveraged the two strategies of local training and compression jointly and allows for partial participation.
arXiv Detail & Related papers (2023-02-20T08:37:44Z) - Accelerated Federated Learning with Decoupled Adaptive Optimization [53.230515878096426]
federated learning (FL) framework enables clients to collaboratively learn a shared model while keeping privacy of training data on clients.
Recently, many iterations efforts have been made to generalize centralized adaptive optimization methods, such as SGDM, Adam, AdaGrad, etc., to federated settings.
This work aims to develop novel adaptive optimization methods for FL from the perspective of dynamics of ordinary differential equations (ODEs)
arXiv Detail & Related papers (2022-07-14T22:46:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.