$k$-Graph: A Graph Embedding for Interpretable Time Series Clustering
- URL: http://arxiv.org/abs/2502.13049v1
- Date: Tue, 18 Feb 2025 16:59:51 GMT
- Title: $k$-Graph: A Graph Embedding for Interpretable Time Series Clustering
- Authors: Paul Boniol, Donato Tiano, Angela Bonifati, Themis Palpanas,
- Abstract summary: $k$-Graph is an unsupervised method crafted to augment interpretability in time series clustering.
Our experimental results reveal that $k$-Graph outperforms current state-of-the-art time series clustering algorithms in accuracy.
- Score: 21.763409747687348
- License:
- Abstract: Time series clustering poses a significant challenge with diverse applications across domains. A prominent drawback of existing solutions lies in their limited interpretability, often confined to presenting users with centroids. In addressing this gap, our work presents $k$-Graph, an unsupervised method explicitly crafted to augment interpretability in time series clustering. Leveraging a graph representation of time series subsequences, $k$-Graph constructs multiple graph representations based on different subsequence lengths. This feature accommodates variable-length time series without requiring users to predetermine subsequence lengths. Our experimental results reveal that $k$-Graph outperforms current state-of-the-art time series clustering algorithms in accuracy, while providing users with meaningful explanations and interpretations of the clustering outcomes.
Related papers
- Unified and Dynamic Graph for Temporal Character Grouping in Long Videos [31.192044026127032]
Video temporal character grouping locates appearing moments of major characters within a video according to their identities.
Recent works have evolved from unsupervised clustering to graph-based supervised clustering.
We present a unified and dynamic graph (UniDG) framework for temporal character grouping.
arXiv Detail & Related papers (2023-08-27T13:22:55Z) - Deep Temporal Graph Clustering [77.02070768950145]
We propose a general framework for deep Temporal Graph Clustering (GC)
GC introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs.
Our framework can effectively improve the performance of existing temporal graph learning methods.
arXiv Detail & Related papers (2023-05-18T06:17:50Z) - Clustering of Time-Varying Graphs Based on Temporal Label Smoothness [28.025212175496964]
We propose a node clustering method for time-varying graphs based on the assumption that the cluster labels are changed smoothly over time.
Experiments on synthetic and real-world time-varying graphs are performed to validate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2023-05-11T05:20:41Z) - Are uGLAD? Time will tell! [4.005044708572845]
We introduce a novel approach for multivariate time series segmentation using conditional independence (CI) graphs.
CI graphs are probabilistic graphical models that represents the partial correlations between the nodes.
We demonstrate successful empirical results on a Physical Activity Monitoring data.
arXiv Detail & Related papers (2023-03-21T07:46:28Z) - Variational Graph Generator for Multi-View Graph Clustering [51.89092260088973]
We propose Variational Graph Generator for Multi-View Graph Clustering (VGMGC)
This generator infers a reliable variational consensus graph based on a priori assumption over multiple graphs.
It embeds the inferred view-common graph and view-specific graphs together with features.
arXiv Detail & Related papers (2022-10-13T13:19:51Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
Subgraph matching algorithms enumerate all is embeddings of a query graph in a data graph G.
matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms.
In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms.
arXiv Detail & Related papers (2022-01-25T00:10:03Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.