Graphint: Graph-based Time Series Clustering Visualisation Tool
- URL: http://arxiv.org/abs/2503.07698v1
- Date: Mon, 10 Mar 2025 17:20:02 GMT
- Title: Graphint: Graph-based Time Series Clustering Visualisation Tool
- Authors: Paul Boniol, Donato Tiano, Angela Bonifati, Themis Palpanas,
- Abstract summary: Graphint is an innovative system based on the $k$-Graph methodology.<n>It integrates a robust time series clustering algorithm with an interactive tool for comparison and interpretation.
- Score: 21.763409747687348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the exponential growth of time series data across diverse domains, there is a pressing need for effective analysis tools. Time series clustering is important for identifying patterns in these datasets. However, prevailing methods often encounter obstacles in maintaining data relationships and ensuring interpretability. We present Graphint, an innovative system based on the $k$-Graph methodology that addresses these challenges. Graphint integrates a robust time series clustering algorithm with an interactive tool for comparison and interpretation. More precisely, our system allows users to compare results against competing approaches, identify discriminative subsequences within specified datasets, and visualize the critical information utilized by $k$-Graph to generate outputs. Overall, Graphint offers a comprehensive solution for extracting actionable insights from complex temporal datasets.
Related papers
- $k$-Graph: A Graph Embedding for Interpretable Time Series Clustering [21.763409747687348]
$k$-Graph is an unsupervised method crafted to augment interpretability in time series clustering.<n>Our experimental results reveal that $k$-Graph outperforms current state-of-the-art time series clustering algorithms in accuracy.
arXiv Detail & Related papers (2025-02-18T16:59:51Z) - Predictive Query-based Pipeline for Graph Data [0.0]
Graph embedding techniques simplify the analysis and processing of large-scale graphs.
Several approaches, such as GraphSAGE, Node2Vec, and FastRP, offer efficient methods for generating graph embeddings.
By storing embeddings as node properties, it is possible to compare different embedding techniques and evaluate their effectiveness.
arXiv Detail & Related papers (2024-12-13T08:03:57Z) - Multi-Scene Generalized Trajectory Global Graph Solver with Composite
Nodes for Multiple Object Tracking [61.69892497726235]
Composite Node Message Passing Network (CoNo-Link) is a framework for modeling ultra-long frames information for association.
In addition to the previous method of treating objects as nodes, the network innovatively treats object trajectories as nodes for information interaction.
Our model can learn better predictions on longer-time scales by adding composite nodes.
arXiv Detail & Related papers (2023-12-14T14:00:30Z) - Unified and Dynamic Graph for Temporal Character Grouping in Long Videos [31.192044026127032]
Video temporal character grouping locates appearing moments of major characters within a video according to their identities.
Recent works have evolved from unsupervised clustering to graph-based supervised clustering.
We present a unified and dynamic graph (UniDG) framework for temporal character grouping.
arXiv Detail & Related papers (2023-08-27T13:22:55Z) - Deep Temporal Graph Clustering [77.02070768950145]
We propose a general framework for deep Temporal Graph Clustering (GC)
GC introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs.
Our framework can effectively improve the performance of existing temporal graph learning methods.
arXiv Detail & Related papers (2023-05-18T06:17:50Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Multiple Graph Learning for Scalable Multi-view Clustering [26.846642220480863]
We propose an efficient multiple graph learning model via a small number of anchor points and tensor Schatten p-norm minimization.
Specifically, we construct a hidden and tractable large graph by anchor graph for each view.
We develop an efficient algorithm, which scales linearly with the data size, to solve our proposed model.
arXiv Detail & Related papers (2021-06-29T13:10:56Z) - Multi-view Graph Learning by Joint Modeling of Consistency and
Inconsistency [65.76554214664101]
Graph learning has emerged as a promising technique for multi-view clustering with its ability to learn a unified and robust graph from multiple views.
We propose a new multi-view graph learning framework, which for the first time simultaneously models multi-view consistency and multi-view inconsistency in a unified objective function.
Experiments on twelve multi-view datasets have demonstrated the robustness and efficiency of the proposed approach.
arXiv Detail & Related papers (2020-08-24T06:11:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.