Improving Algorithmic Efficiency using Cryptography
- URL: http://arxiv.org/abs/2502.13065v1
- Date: Tue, 18 Feb 2025 17:08:59 GMT
- Title: Improving Algorithmic Efficiency using Cryptography
- Authors: Vinod Vaikuntanathan, Or Zamir,
- Abstract summary: We show how to use cryptography to improve the time complexity of solving computational problems.
We show that under standard cryptographic assumptions, we can design algorithms that are faster than existing ones.
- Score: 11.496343300483904
- License:
- Abstract: Cryptographic primitives have been used for various non-cryptographic objectives, such as eliminating or reducing randomness and interaction. We show how to use cryptography to improve the time complexity of solving computational problems. Specifically, we show that under standard cryptographic assumptions, we can design algorithms that are asymptotically faster than existing ones while maintaining correctness. As a concrete demonstration, we construct a distribution of trapdoored matrices with the following properties: (a) computationally bounded adversaries cannot distinguish a random matrix from one drawn from this distribution, and (b) given a secret key, we can multiply such a n-by-n matrix with any vector in near-linear (in n) time. We provide constructions both over finite fields and the reals. This enables a broad speedup technique: any algorithm relying on a random matrix - such as those using various notions of dimensionality reduction - can replace it with a matrix from our distribution, achieving computational speedups while preserving correctness.
Related papers
- Tensor networks based quantum optimization algorithm [0.0]
In optimization, one of the well-known classical algorithms is power iterations.
We propose a quantum realiziation to circumvent this pitfall.
Our methodology becomes instance agnostic and thus allows one to address black-box optimization within the framework of quantum computing.
arXiv Detail & Related papers (2024-04-23T13:49:11Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Learning the Positions in CountSketch [49.57951567374372]
We consider sketching algorithms which first compress data by multiplication with a random sketch matrix, and then apply the sketch to quickly solve an optimization problem.
In this work, we propose the first learning-based algorithms that also optimize the locations of the non-zero entries.
arXiv Detail & Related papers (2023-06-11T07:28:35Z) - A fast Multiplicative Updates algorithm for Non-negative Matrix Factorization [2.646309221150203]
We propose to improve the Multiplicative Updates algorithm by crafting a tighter upper bound of the Hessian matrix for each alternate subproblem.
Convergence is still ensured and we observe in practice on both synthetic and real world dataset that the proposed fastMU algorithm is often several orders of magnitude faster than the regular Multiplicative Updates algorithm.
arXiv Detail & Related papers (2023-03-31T12:09:36Z) - Batch-efficient EigenDecomposition for Small and Medium Matrices [65.67315418971688]
EigenDecomposition (ED) is at the heart of many computer vision algorithms and applications.
We propose a QR-based ED method dedicated to the application scenarios of computer vision.
arXiv Detail & Related papers (2022-07-09T09:14:12Z) - A quantum algorithm for solving eigenproblem of the Laplacian matrix of
a fully connected weighted graph [4.045204834863644]
We propose an efficient quantum algorithm to solve the eigenproblem of the Laplacian matrix of a fully connected weighted graph.
Specifically, we adopt the optimal Hamiltonian simulation technique based on the block-encoding framework.
We also show that our algorithm can be extended to solve the eigenproblem of symmetric (non-symmetric) normalized Laplacian matrix.
arXiv Detail & Related papers (2022-03-28T02:24:08Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Efficient GPU implementation of randomized SVD and its applications [17.71779625877989]
Matrix decompositions are ubiquitous in machine learning, including applications in dimensionality data compression and deep learning algorithms.
Typical solutions for matrix decompositions have complexity which significantly increases their computational cost and time.
We leverage efficient processing operations that can be run in parallel on modern Graphical Processing Units (GPUs) to reduce the computational burden of computing matrix decompositions.
arXiv Detail & Related papers (2021-10-05T07:42:41Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Optimal Iterative Sketching with the Subsampled Randomized Hadamard
Transform [64.90148466525754]
We study the performance of iterative sketching for least-squares problems.
We show that the convergence rate for Haar and randomized Hadamard matrices are identical, andally improve upon random projections.
These techniques may be applied to other algorithms that employ randomized dimension reduction.
arXiv Detail & Related papers (2020-02-03T16:17:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.