AI and the Transformation of Accountability and Discretion in Urban Governance
- URL: http://arxiv.org/abs/2502.13101v1
- Date: Tue, 18 Feb 2025 18:11:39 GMT
- Title: AI and the Transformation of Accountability and Discretion in Urban Governance
- Authors: Stephen Goldsmith, Juncheng Yang,
- Abstract summary: The paper highlights AI's potential to reposition human discretion and reshape specific types of accountability.<n>It advances a framework for responsible AI adoption, ensuring that urban governance remains adaptive, transparent, and aligned with public values.
- Score: 1.9152655229960793
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of Artificial Intelligence (AI) in urban governance presents significant opportunities to transform decision-making and enhance accountability. The paper highlights AI's potential to reposition human discretion and reshape specific types of accountability, elevating the decision-making capabilities of both frontline bureaucrats and managers while ensuring ethical standards and public trust are maintained. While AI can enhance bureaucratic flexibility and efficiency, its integration will also necessitate new governance frameworks to mitigate risks associated with uneven capacity distribution, ethical concerns, and public trust. Following the literature review and theoretical discussion, this study introduces a set of guiding principles for AI-assisted urban governance, emphasizing equitable AI deployment, adaptive administrative structures, robust data governance, transparent human-AI collaboration, and citizen engagement in oversight mechanisms. By critically evaluating AI's dual role in expanding discretion and reinforcing accountability, this paper advances a framework for responsible AI adoption, ensuring that urban governance remains adaptive, transparent, and aligned with public values.
Related papers
- HH4AI: A methodological Framework for AI Human Rights impact assessment under the EUAI ACT [1.7754875105502606]
The paper highlights AIs transformative nature, driven by autonomy, data, and goal-oriented design.
A key challenge is defining and assessing "high-risk" AI systems across industries.
It proposes a Fundamental Rights Impact Assessment (FRIA) methodology, a gate-based framework designed to isolate and assess risks.
arXiv Detail & Related papers (2025-03-23T19:10:14Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.
Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - Safety is Essential for Responsible Open-Ended Systems [47.172735322186]
Open-Endedness is the ability of AI systems to continuously and autonomously generate novel and diverse artifacts or solutions.<n>This position paper argues that the inherently dynamic and self-propagating nature of Open-Ended AI introduces significant, underexplored risks.
arXiv Detail & Related papers (2025-02-06T21:32:07Z) - Decentralized Governance of Autonomous AI Agents [0.0]
ETHOS is a decentralized governance (DeGov) model leveraging Web3 technologies, including blockchain, smart contracts, and decentralized autonomous organizations (DAOs)<n>It establishes a global registry for AI agents, enabling dynamic risk classification, proportional oversight, and automated compliance monitoring.<n>By integrating philosophical principles of rationality, ethical grounding, and goal alignment, ETHOS aims to create a robust research agenda for promoting trust, transparency, and participatory governance.
arXiv Detail & Related papers (2024-12-22T18:01:49Z) - Responsible AI Governance: A Response to UN Interim Report on Governing AI for Humanity [15.434533537570614]
The report emphasizes the transformative potential of AI in achieving the Sustainable Development Goals.<n>It acknowledges the need for robust governance to mitigate associated risks.<n>The report concludes with actionable principles for fostering responsible AI governance.
arXiv Detail & Related papers (2024-11-29T18:57:24Z) - Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
This paper presents a causal framework using Structural Causal Models (SCMs) to systematically attribute responsibility in human-AI systems.
Two case studies illustrate the framework's adaptability in diverse human-AI collaboration scenarios.
arXiv Detail & Related papers (2024-11-05T17:17:45Z) - Open Problems in Technical AI Governance [93.89102632003996]
Technical AI governance refers to technical analysis and tools for supporting the effective governance of AI.
This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
arXiv Detail & Related papers (2024-07-20T21:13:56Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Generative AI Needs Adaptive Governance [0.0]
generative AI challenges the notions of governance, trust, and human agency.
This paper argues that generative AI calls for adaptive governance.
We outline actors, roles, as well as both shared and actors-specific policy activities.
arXiv Detail & Related papers (2024-06-06T23:47:14Z) - AI Governance and Accountability: An Analysis of Anthropic's Claude [0.0]
This paper examines the AI governance landscape, focusing on Anthropic's Claude, a foundational AI model.
We analyze Claude through the lens of the NIST AI Risk Management Framework and the EU AI Act, identifying potential threats and proposing mitigation strategies.
arXiv Detail & Related papers (2024-05-02T23:37:06Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Responsible AI Governance: A Systematic Literature Review [8.318630741859113]
This paper aims to examine the existing literature on AI Governance.
The focus of this study is to analyse the literature to answer key questions: WHO is accountable for AI systems' governance, WHAT elements are being governed, WHEN governance occurs within the AI development life cycle, and HOW it is executed through various mechanisms like frameworks, tools, standards, policies, or models.
The findings of this study provides a foundational basis for future research and development of comprehensive governance models that align with RAI principles.
arXiv Detail & Related papers (2023-12-18T05:22:36Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Accountability in AI: From Principles to Industry-specific Accreditation [4.033641609534416]
Recent AI-related scandals have shed a spotlight on accountability in AI.
This paper draws on literature from public policy and governance to make two contributions.
arXiv Detail & Related papers (2021-10-08T16:37:11Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.