論文の概要: NaturalReasoning: Reasoning in the Wild with 2.8M Challenging Questions
- arxiv url: http://arxiv.org/abs/2502.13124v3
- Date: Sat, 14 Jun 2025 17:49:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 15:15:29.993209
- Title: NaturalReasoning: Reasoning in the Wild with 2.8M Challenging Questions
- Title(参考訳): 自然推論:280万質問による野生での推論
- Authors: Weizhe Yuan, Jane Yu, Song Jiang, Karthik Padthe, Yang Li, Ilia Kulikov, Kyunghyun Cho, Dong Wang, Yuandong Tian, Jason E Weston, Xian Li,
- Abstract要約: NaturalReasoningは、複数のドメインにまたがる280万の質問からなる包括的なデータセットである。
本研究では,NaturalReasoningが強力な教師モデルから推論能力を効果的に引き出すことができることを示す。
また、NaturalReasoningは、外部報酬モデルや自己回帰モデルを用いて教師なしの自己学習に有効であることを示す。
- 参考スコア(独自算出の注目度): 86.15997774820931
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scaling reasoning capabilities beyond traditional domains such as math and coding is hindered by the lack of diverse and high-quality questions. To overcome this limitation, we introduce a scalable approach for generating diverse and challenging reasoning questions, accompanied by reference answers. We present NaturalReasoning, a comprehensive dataset comprising 2.8 million questions that span multiple domains, including STEM fields (e.g., Physics, Computer Science), Economics, Social Sciences, and more. We demonstrate the utility of the questions in NaturalReasoning through knowledge distillation experiments which show that NaturalReasoning can effectively elicit and transfer reasoning capabilities from a strong teacher model. Furthermore, we demonstrate that NaturalReasoning is also effective for unsupervised self-training using external reward models or self-rewarding. To foster future work, we publicly release NaturalReasoning at https://huggingface.co/datasets/facebook/natural_reasoning.
- Abstract(参考訳): 数学やコーディングといった従来の領域を超えた推論能力のスケーリングは、多様で高品質な質問の欠如によって妨げられている。
この制限を克服するため、我々は多様で挑戦的な推論問題を生成するためのスケーラブルなアプローチを導入し、参照回答を添える。
本稿では、STEM分野(例えば、物理学、計算機科学)、経済学、社会科学などを含む複数の分野にまたがる280万の質問からなる包括的データセットであるNaturalReasoningを紹介する。
本研究では, ナチュラル推論の知識蒸留実験を通じて, 強力な教師モデルからナチュラル推論を効果的に引き出すことができることを示す。
さらに,NaturalReasoningは,外部報酬モデルや自己回帰モデルを用いた教師なし自己学習にも有効であることを示す。
今後の作業を促進するため、NatureReasoningをhttps://huggingface.co/datasets/facebook/natural_reasoning.comで公開しています。
関連論文リスト
- NaturalThoughts: Selecting and Distilling Reasoning Traces for General Reasoning Tasks [65.70224757972068]
本研究では,NaturalReasoningからの質問のプールに基づいて,強力な教師モデルから推論トレースを選択する。
データサイズをランダムサンプリングでスケールアップすることは、安定したパフォーマンス向上を伴う強力なベースラインであることに気付きました。
より多様な推論戦略を必要とする難しい事例を選択することは、教師モデルの推論スキルを伝達するよりサンプル効率が高いことが判明した。
論文 参考訳(メタデータ) (2025-07-02T17:30:24Z) - SR-FoT: A Syllogistic-Reasoning Framework of Thought for Large Language Models Tackling Knowledge-based Reasoning Tasks [42.392103712958445]
大規模言語モデル(LLM)は正しい推論パスに従わないかもしれない。
我々は、多段階のSylological-Reasoning Framework of Thought (SR-FoT)を提案する。
我々のSR-FoTは、まず質問を解釈し、それから解釈と元の質問を使って適切な主要な前提を提案する。
論文 参考訳(メタデータ) (2025-01-20T17:00:41Z) - Unleashing LLM Reasoning Capability via Scalable Question Synthesis from Scratch [54.12139707822201]
本稿では,新しい,スケーラブルで費用対効果の高いデータ合成手法であるScaleQuestを提案する。
スクラッチから多様な質問を生成することで、100万の問題解決ペアのデータセットを生成します。
私たちの実験では、データに基づいてトレーニングされたモデルが、既存のオープンソースデータセットより優れています。
論文 参考訳(メタデータ) (2024-10-24T12:42:04Z) - Multi-Faceted Question Complexity Estimation Targeting Topic Domain-Specificity [0.0]
本稿では,NLP手法と知識グラフ解析を併用した,ドメイン固有の質問難度推定のための新しいフレームワークを提案する。
本稿では,トピック検索コスト,トピック・サリエンス,トピック・コヒーレンス,トピック・スーパーファシリティの4つの主要なパラメータを紹介する。
これらの特徴を訓練したモデルにより,質問の難易度を予測する手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-23T05:40:35Z) - Analyzing Human Questioning Behavior and Causal Curiosity through Natural Queries [91.70689724416698]
NatQuest(ナットクエスト)は、3つの異なるソースから自然発生の質問13,500件のコレクションである。
分析の結果,データセット内には因果的疑問(最大42%)が有意な存在であることが判明した。
論文 参考訳(メタデータ) (2024-05-30T17:55:28Z) - Don't Just Say "I don't know"! Self-aligning Large Language Models for Responding to Unknown Questions with Explanations [70.6395572287422]
自己調整法は,回答を拒否するだけでなく,未知の質問の解答不能を説明できる。
我々は, LLM自体を微調整し, 未知の質問に対する応答を所望の通りに調整するために, 偏差駆動による自己計算を行い, 有資格データを選択する。
論文 参考訳(メタデータ) (2024-02-23T02:24:36Z) - ReST meets ReAct: Self-Improvement for Multi-Step Reasoning LLM Agent [50.508669199496474]
外部知識に基づいて推論と行動を行うReAct-style LLMエージェントを開発した。
エージェントをReSTライクな手法で改良し,従来の軌道上で反復的に訓練する。
引き起こされた大きなモデルから始まり、アルゴリズムのたった2イテレーションの後に、微調整された小さなモデルを生成することができる。
論文 参考訳(メタデータ) (2023-12-15T18:20:15Z) - MacGyver: Are Large Language Models Creative Problem Solvers? [87.70522322728581]
本稿では, 現代LLMの創造的問題解決能力について, 制約付き環境下で検討する。
我々は1,600以上の実世界の問題からなる自動生成データセットであるMACGYVERを作成する。
我々はLLMと人間の両方にコレクションを提示し、それらの問題解決能力を比較して比較する。
論文 参考訳(メタデータ) (2023-11-16T08:52:27Z) - FOLLOWUPQG: Towards Information-Seeking Follow-up Question Generation [38.78216651059955]
実世界の情報検索フォローアップ質問生成(FQG)の課題について紹介する。
オープンエンド質問に対するRedditフレンドリーな説明を提供するフォーラムレイマンから収集した,3K以上の実世界のデータセット(初期質問,回答,フォローアップ質問)であるFOLLOWUPQGを構築した。
既存のデータセットとは対照的に、FOLLOWUPQGの質問は情報を求めるためにより多様な実用的戦略を使用し、高次認知能力も示している。
論文 参考訳(メタデータ) (2023-09-10T11:58:29Z) - RECKONING: Reasoning through Dynamic Knowledge Encoding [51.076603338764706]
言語モデルは、文脈の一部として提供される知識について推論することで、質問に答えることができることを示す。
これらの状況では、モデルは質問に答えるために必要な知識を区別することができない。
我々は、与えられた文脈知識をモデルのパラメータに折り畳み、より堅牢に推論するようにモデルに教えることを提案する。
論文 参考訳(メタデータ) (2023-05-10T17:54:51Z) - Causal Deep Learning [77.49632479298745]
因果性は、現実世界の問題を解決する方法を変える可能性がある。
しかし因果関係は、実際にテストできない重要な仮定を必要とすることが多い。
我々は、因果性に関する新しい考え方を提案します。
論文 参考訳(メタデータ) (2023-03-03T19:19:18Z) - Towards a Holistic Understanding of Mathematical Questions with
Contrastive Pre-training [65.10741459705739]
本稿では,数学的問題表現,すなわち QuesCo に対する対照的な事前学習手法を提案する。
まず、コンテンツレベルと構造レベルを含む2段階の質問強化を設計し、類似した目的で文字通り多様な質問ペアを生成する。
そこで我々は,知識概念の階層的情報を完全に活用するために,知識階層を意識したランク戦略を提案する。
論文 参考訳(メタデータ) (2023-01-18T14:23:29Z) - DisentQA: Disentangling Parametric and Contextual Knowledge with
Counterfactual Question Answering [34.70206857546496]
質問応答モデルは通常、推論時間中に「知識」の2つのソースにアクセスする。
答えが与えられた非パラメトリック知識に由来するかどうかは不明である。
本稿では,2つの知識源を解き放つために,QAモデルを訓練する新たなパラダイムを提案する。
論文 参考訳(メタデータ) (2022-11-10T15:34:44Z) - Enhancing Question Generation with Commonsense Knowledge [33.289599417096206]
質問生成プロセスにコモンセンス知識を導入するためのマルチタスク学習フレームワークを提案する。
SQuAD実験の結果,提案手法は自動評価と人的評価の両方でQG性能を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-06-19T08:58:13Z) - Social Commonsense Reasoning with Multi-Head Knowledge Attention [24.70946979449572]
社会的コモンセンス推論には、テキストの理解、社会イベントに関する知識、その実践的な意味、およびコモンセンス推論スキルが必要である。
本稿では,半構造化コモンセンス推論規則を符号化し,それをトランスフォーマーベースの推論セルに組み込むことを学習する,新しいマルチヘッド知識アテンションモデルを提案する。
論文 参考訳(メタデータ) (2020-10-12T10:24:40Z) - Reinforced Multi-task Approach for Multi-hop Question Generation [47.15108724294234]
我々は,その文脈における支援事実に基づいて,関連する質問を生成することを目的としたマルチホップ質問生成を取り上げている。
我々は,質問生成を導くために,回答認識支援事実予測の補助タスクを備えたマルチタスク学習を採用する。
マルチホップ質問応答データセットHotPotQAの実験を通して,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-04-05T10:16:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。