HedgeAgents: A Balanced-aware Multi-agent Financial Trading System
- URL: http://arxiv.org/abs/2502.13165v1
- Date: Mon, 17 Feb 2025 04:13:19 GMT
- Title: HedgeAgents: A Balanced-aware Multi-agent Financial Trading System
- Authors: Xiangyu Li, Yawen Zeng, Xiaofen Xing, Jin Xu, Xiangmin Xu,
- Abstract summary: Large Language Models (LLMs) and Agent-based models exhibit promising potential in real-time market analysis and trading decisions.
They still experience a significant -20% loss when confronted with rapid declines or frequent fluctuations.
This paper introduces an innovative multi-agent system, HedgeAgents, aimed at bolstering system via hedging robustness'' strategies.
- Score: 20.48571388047213
- License:
- Abstract: As automated trading gains traction in the financial market, algorithmic investment strategies are increasingly prominent. While Large Language Models (LLMs) and Agent-based models exhibit promising potential in real-time market analysis and trading decisions, they still experience a significant -20% loss when confronted with rapid declines or frequent fluctuations, impeding their practical application. Hence, there is an imperative to explore a more robust and resilient framework. This paper introduces an innovative multi-agent system, HedgeAgents, aimed at bolstering system robustness via ``hedging'' strategies. In this well-balanced system, an array of hedging agents has been tailored, where HedgeAgents consist of a central fund manager and multiple hedging experts specializing in various financial asset classes. These agents leverage LLMs' cognitive capabilities to make decisions and coordinate through three types of conferences. Benefiting from the powerful understanding of LLMs, our HedgeAgents attained a 70% annualized return and a 400% total return over a period of 3 years. Moreover, we have observed with delight that HedgeAgents can even formulate investment experience comparable to those of human experts (https://hedgeagents.github.io/).
Related papers
- TradingAgents: Multi-Agents LLM Financial Trading Framework [4.293484524693143]
TradingAgents proposes a novel stock trading framework inspired by trading firms.
It features LLM-powered agents in specialized roles such as fundamental analysts, sentiment analysts, technical analysts, and traders with varied risk profiles.
By simulating a dynamic, collaborative trading environment, this framework aims to improve trading performance.
arXiv Detail & Related papers (2024-12-28T12:54:06Z) - Enhancing Investment Analysis: Optimizing AI-Agent Collaboration in Financial Research [17.43528917594047]
We propose a novel multi-agent collaboration system designed to enhance decision-making in financial investment research.
We focus on three sub-tasks: fundamentals, market sentiment, and risk analysis, by analyzing the 2023 SEC 10-K forms of 30 companies listed on the Dow Jones Index.
Our findings reveal significant performance variations based on the configurations of AI agents for different tasks.
arXiv Detail & Related papers (2024-11-07T15:28:20Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
We introduce the Agent-as-a-Judge framework, wherein agentic systems are used to evaluate agentic systems.
This is an organic extension of the LLM-as-a-Judge framework, incorporating agentic features that enable intermediate feedback for the entire task-solving process.
We present DevAI, a new benchmark of 55 realistic automated AI development tasks.
arXiv Detail & Related papers (2024-10-14T17:57:02Z) - Automate Strategy Finding with LLM in Quant investment [4.46212317245124]
We propose a novel framework for quantitative stock investment in portfolio management and alpha mining.
This paper proposes a framework where large language models (LLMs) mine alpha factors from multimodal financial data.
Experiments on the Chinese stock markets demonstrate that this framework significantly outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-09-10T07:42:28Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgent is a generic method to automatically extend expert agents to multi-agent systems via the evolutionary algorithm.
We show that EvoAgent can automatically generate multiple expert agents and significantly enhance the task-solving capabilities of LLM-based agents.
arXiv Detail & Related papers (2024-06-20T11:49:23Z) - Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management [1.2016264781280588]
A multi-agent reinforcement learning (RL) approach is proposed to balance the trade-off between the overall portfolio returns and their potential risks.
The obtained empirical results clearly reveal the potential strengths of our proposed MASA framework.
arXiv Detail & Related papers (2024-02-01T11:31:26Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z) - Quantitative Stock Investment by Routing Uncertainty-Aware Trading
Experts: A Multi-Task Learning Approach [29.706515133374193]
We show that existing deep learning methods are sensitive to random seeds and network routers.
We propose a novel two-stage mixture-of-experts (MoE) framework for quantitative investment to mimic the efficient bottom-up trading strategy design workflow of successful trading firms.
AlphaMix significantly outperforms many state-of-the-art baselines in terms of four financial criteria.
arXiv Detail & Related papers (2022-06-07T08:58:00Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
We show that deep reinforcement learning can discover stable solutions that are epsilon-Nash equilibria for a meta-game over agent types.
Our approach is more flexible and does not need unrealistic assumptions, e.g., market clearing.
We demonstrate our approach in real-business-cycle models, a representative family of DGE models, with 100 worker-consumers, 10 firms, and a government who taxes and redistributes.
arXiv Detail & Related papers (2022-01-03T17:00:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.