Synthetic generation of 2D data records based on Autoencoders
- URL: http://arxiv.org/abs/2502.13183v1
- Date: Tue, 18 Feb 2025 10:40:47 GMT
- Title: Synthetic generation of 2D data records based on Autoencoders
- Authors: Darius Couchard, Oscar Olarte, Rob Haelterman,
- Abstract summary: Gas Chromatography coupled with Ion Mobility Spectrometry (GC-IMS) is a dual-separation analytical technique.
Data generated by GC-IMS is typically represented as two-dimensional spectra.
This study introduces a novel method for generating synthetic 2D spectra using a deep learning framework based on Autoencoders.
- Score: 0.0
- License:
- Abstract: Gas Chromatography coupled with Ion Mobility Spectrometry (GC-IMS) is a dual-separation analytical technique widely used for identifying components in gaseous samples by separating and analysing the arrival times of their constituent species. Data generated by GC-IMS is typically represented as two-dimensional spectra, providing rich information but posing challenges for data-driven analysis due to limited labelled datasets. This study introduces a novel method for generating synthetic 2D spectra using a deep learning framework based on Autoencoders. Although applied here to GC-IMS data, the approach is broadly applicable to any two-dimensional spectral measurements where labelled data are scarce. While performing component classification over a labelled dataset of GC-IMS records, the addition of synthesized records significantly has improved the classification performance, demonstrating the method's potential for overcoming dataset limitations in machine learning frameworks.
Related papers
- It Takes Two: Accurate Gait Recognition in the Wild via Cross-granularity Alignment [72.75844404617959]
This paper proposes a novel cross-granularity alignment gait recognition method, named XGait.
To achieve this goal, the XGait first contains two branches of backbone encoders to map the silhouette sequences and the parsing sequences into two latent spaces.
Comprehensive experiments on two large-scale gait datasets show XGait with the Rank-1 accuracy of 80.5% on Gait3D and 88.3% CCPG.
arXiv Detail & Related papers (2024-11-16T08:54:27Z) - Spectral Graph Reasoning Network for Hyperspectral Image Classification [0.43512163406551996]
Convolutional neural networks (CNNs) have achieved remarkable performance in hyperspectral image (HSI) classification.
We propose a spectral graph reasoning network (SGR) learning framework comprising two crucial modules.
Experiments on two HSI datasets demonstrate that the proposed architecture can significantly improve the classification accuracy.
arXiv Detail & Related papers (2024-07-02T20:29:23Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
Extended Vision techniques often pose a challenge in their interpretation.
The huge dimensionality of data cube spectra poses a complex task in its statistical interpretation.
In this paper, we explore the possibility of applying unsupervised clustering methods in encoded space.
A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm.
arXiv Detail & Related papers (2024-01-31T09:31:28Z) - Analyze Mass Spectrometry data with Artificial Intelligence to assist
the understanding of past habitability of Mars and provide insights for
future missions [0.0]
This paper presents an application of artificial intelligence on mass spectrometry data for detecting habitability potential of ancient Mars.
Although data was collected for planet Mars the same approach can be replicated for any terrestrial object of our solar system.
arXiv Detail & Related papers (2023-10-18T11:14:46Z) - Deep Spectro-temporal Artifacts for Detecting Synthesized Speech [57.42110898920759]
This paper provides an overall assessment of track 1 (Low-quality Fake Audio Detection) and track 2 (Partially Fake Audio Detection)
In this paper, spectro-temporal artifacts were detected using raw temporal signals, spectral features, as well as deep embedding features.
We ranked 4th and 5th in track 1 and track 2, respectively.
arXiv Detail & Related papers (2022-10-11T08:31:30Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
We propose Dual Adversarial Auto-encoder (Dual-AAE) for unsupervised clustering.
By performing variational inference on the objective function of Dual-AAE, we derive a new reconstruction loss which can be optimized by training a pair of Auto-encoders.
Experiments on four benchmarks show that Dual-AAE achieves superior performance over state-of-the-art clustering methods.
arXiv Detail & Related papers (2020-08-23T13:16:34Z) - A Comparative study of Artificial Neural Networks Using Reinforcement
learning and Multidimensional Bayesian Classification Using Parzen Density
Estimation for Identification of GC-EIMS Spectra of Partially Methylated
Alditol Acetates [0.304585143845864]
This study reports the development of a pattern recognition search engine for a World Wide Web-based database of gas chromatography-electron impact mass spectra (GC-EIMS) of partially methylated Alditol acetates (PMAAs)
The developed system is implemented on the world wide web, and is intended to identify PMAAs using submitted spectra of these molecules recorded on any GC-EIMS instrument.
arXiv Detail & Related papers (2020-07-31T17:54:51Z) - Ensemble Model with Batch Spectral Regularization and Data Blending for
Cross-Domain Few-Shot Learning with Unlabeled Data [75.94147344921355]
We build a multi-branch ensemble framework by using diverse feature transformation matrices.
We propose a data blending method to exploit the unlabeled data and augment the sparse support set in the target domain.
arXiv Detail & Related papers (2020-06-08T02:27:34Z) - SVM-Lattice: A Recognition & Evaluation Frame for Double-peaked Profiles [5.2708048125255615]
A new lattice structure named SVM-Lattice is designed based on SVM and FCL.
SVM-Lattice is particularly applied in the recognition and evaluation of rare spectra with double-peaked profiles.
The results exhibit good consistency with traditional methods, more detailed and accurate evaluations of classification results, and higher searching efficiency than other similar methods.
arXiv Detail & Related papers (2020-05-02T01:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.