Datacube segmentation via Deep Spectral Clustering
- URL: http://arxiv.org/abs/2401.17695v2
- Date: Mon, 15 Jul 2024 09:11:19 GMT
- Title: Datacube segmentation via Deep Spectral Clustering
- Authors: Alessandro Bombini, Fernando García-Avello Bofías, Caterina Bracci, Michele Ginolfi, Chiara Ruberto,
- Abstract summary: Extended Vision techniques often pose a challenge in their interpretation.
The huge dimensionality of data cube spectra poses a complex task in its statistical interpretation.
In this paper, we explore the possibility of applying unsupervised clustering methods in encoded space.
A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm.
- Score: 76.48544221010424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extended Vision techniques are ubiquitous in physics. However, the data cubes steaming from such analysis often pose a challenge in their interpretation, due to the intrinsic difficulty in discerning the relevant information from the spectra composing the data cube. Furthermore, the huge dimensionality of data cube spectra poses a complex task in its statistical interpretation; nevertheless, this complexity contains a massive amount of statistical information that can be exploited in an unsupervised manner to outline some essential properties of the case study at hand, e.g.~it is possible to obtain an image segmentation via (deep) clustering of data-cube's spectra, performed in a suitably defined low-dimensional embedding space. To tackle this topic, we explore the possibility of applying unsupervised clustering methods in encoded space, i.e. perform deep clustering on the spectral properties of datacube pixels. A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, in charge of mapping spectra into lower dimensional metric spaces, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm. We apply this technique to two different use cases, of different physical origins: a set of Macro mapping X-Ray Fluorescence (MA-XRF) synthetic data on pictorial artworks, and a dataset of simulated astrophysical observations.
Related papers
- ClusterGraph: a new tool for visualization and compression of multidimensional data [0.0]
This paper provides an additional layer on the output of any clustering algorithm.
It provides information about the global layout of clusters, obtained from the considered clustering algorithm.
arXiv Detail & Related papers (2024-11-08T09:40:54Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
Simplicial complexes prove effective in modeling data with multiway dependencies.
We develop a contrastive self-supervised learning approach for processing simplicial data.
arXiv Detail & Related papers (2023-09-14T00:40:07Z) - Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
We present S2ADet, an object detector that harnesses the rich spectral and spatial complementary information inherent in hyperspectral images.
S2ADet surpasses existing state-of-the-art methods, achieving robust and reliable results.
arXiv Detail & Related papers (2023-06-14T09:01:50Z) - Enhancing cluster analysis via topological manifold learning [0.3823356975862006]
We show that inferring the topological structure of a dataset before clustering can considerably enhance cluster detection.
We combine manifold learning method UMAP for inferring the topological structure with density-based clustering method DBSCAN.
arXiv Detail & Related papers (2022-07-01T15:53:39Z) - Deep Spectral Methods: A Surprisingly Strong Baseline for Unsupervised
Semantic Segmentation and Localization [98.46318529630109]
We take inspiration from traditional spectral segmentation methods by reframing image decomposition as a graph partitioning problem.
We find that these eigenvectors already decompose an image into meaningful segments, and can be readily used to localize objects in a scene.
By clustering the features associated with these segments across a dataset, we can obtain well-delineated, nameable regions.
arXiv Detail & Related papers (2022-05-16T17:47:44Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z) - ExClus: Explainable Clustering on Low-dimensional Data Representations [9.496898312608307]
Dimensionality reduction and clustering techniques are frequently used to analyze complex data sets, but their results are often not easy to interpret.
We consider how to support users in interpreting apparent cluster structure on scatter plots where the axes are not directly interpretable.
We propose a new method to compute an interpretable clustering automatically, where the explanation is in the original high-dimensional space and the clustering is coherent in the low-dimensional projection.
arXiv Detail & Related papers (2021-11-04T21:24:01Z) - Contrastive analysis for scatter plot-based representations of
dimensionality reduction [0.0]
This paper introduces a methodology to explore multidimensional datasets and interpret clusters' formation.
We also introduce a bipartite graph to visually interpret and explore the relationship between the statistical variables used to understand how the attributes influenced cluster formation.
arXiv Detail & Related papers (2021-01-26T01:16:31Z) - Spectral Analysis Network for Deep Representation Learning and Image
Clustering [53.415803942270685]
This paper proposes a new network structure for unsupervised deep representation learning based on spectral analysis.
It can identify the local similarities among images in patch level and thus more robust against occlusion.
It can learn more clustering-friendly representations and is capable to reveal the deep correlations among data samples.
arXiv Detail & Related papers (2020-09-11T05:07:15Z) - Spectral Pyramid Graph Attention Network for Hyperspectral Image
Classification [5.572542792318872]
Convolutional neural networks (CNN) have made significant advances in hyperspectral image (HSI) classification.
Standard convolutional kernel neglects intrinsic connections between data points, resulting in poor region delineation and small spurious predictions.
This paper presents a novel architecture which explicitly addresses these two issues.
arXiv Detail & Related papers (2020-01-20T13:49:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.