On the Privacy Risks of Spiking Neural Networks: A Membership Inference Analysis
- URL: http://arxiv.org/abs/2502.13191v1
- Date: Tue, 18 Feb 2025 15:19:20 GMT
- Title: On the Privacy Risks of Spiking Neural Networks: A Membership Inference Analysis
- Authors: Junyi Guan, Abhijith Sharma, Chong Tian, Salem Lahlou,
- Abstract summary: Spiking Neural Networks (SNNs) are increasingly explored for their energy efficiency and robustness in real-world applications.
In this work, we investigate the susceptibility of SNNs to Membership Inference Attacks (MIAs)
MIAs is a major privacy threat where an adversary attempts to determine whether a given sample was part of the training dataset.
- Score: 1.8029689470712593
- License:
- Abstract: Spiking Neural Networks (SNNs) are increasingly explored for their energy efficiency and robustness in real-world applications, yet their privacy risks remain largely unexamined. In this work, we investigate the susceptibility of SNNs to Membership Inference Attacks (MIAs) -- a major privacy threat where an adversary attempts to determine whether a given sample was part of the training dataset. While prior work suggests that SNNs may offer inherent robustness due to their discrete, event-driven nature, we find that its resilience diminishes as latency (T) increases. Furthermore, we introduce an input dropout strategy under black box setting, that significantly enhances membership inference in SNNs. Our findings challenge the assumption that SNNs are inherently more secure, and even though they are expected to be better, our results reveal that SNNs exhibit privacy vulnerabilities that are equally comparable to Artificial Neural Networks (ANNs). Our code is available at https://anonymous.4open.science/r/MIA_SNN-3610.
Related papers
- Are Neuromorphic Architectures Inherently Privacy-preserving? An Exploratory Study [3.4673556247932225]
Spiking Neural Networks (SNNs) are emerging as promising alternatives to Artificial Neural Networks (ANNs)
This paper examines whether SNNs inherently offer better privacy.
We analyze the impact of learning algorithms (surrogate gradient and evolutionary), frameworks (snnTorch, TENNLab, LAVA), and parameters on SNN privacy.
arXiv Detail & Related papers (2024-11-10T22:18:53Z) - Data Poisoning-based Backdoor Attack Framework against Supervised Learning Rules of Spiking Neural Networks [3.9444202574850755]
Spiking Neural Networks (SNNs) are known for their low energy consumption and high robustness.
This paper explores the robustness performance of SNNs trained by supervised learning rules under backdoor attacks.
arXiv Detail & Related papers (2024-09-24T02:15:19Z) - RSC-SNN: Exploring the Trade-off Between Adversarial Robustness and Accuracy in Spiking Neural Networks via Randomized Smoothing Coding [17.342181435229573]
Spiking Neural Networks (SNNs) have received widespread attention due to their unique neuronal dynamics and low-power nature.
Previous research empirically shows that SNNs with Poisson coding are more robust than Artificial Neural Networks (ANNs) on small-scale datasets.
This work theoretically demonstrates that SNN's inherent adversarial robustness stems from its Poisson coding.
arXiv Detail & Related papers (2024-07-29T15:26:15Z) - Enhancing Adversarial Robustness in SNNs with Sparse Gradients [46.15229142258264]
Spiking Neural Networks (SNNs) have attracted great attention for their energy-efficient operations and biologically inspired structures.
Existing techniques, whether adapted from ANNs or specifically designed for SNNs, exhibit limitations in training SNNs or defending against strong attacks.
We propose a novel approach to enhance the robustness of SNNs through gradient sparsity regularization.
arXiv Detail & Related papers (2024-05-30T05:39:27Z) - Unraveling Privacy Risks of Individual Fairness in Graph Neural Networks [66.0143583366533]
Graph neural networks (GNNs) have gained significant attraction due to their expansive real-world applications.
To build trustworthy GNNs, two aspects - fairness and privacy - have emerged as critical considerations.
Previous studies have separately examined the fairness and privacy aspects of GNNs, revealing their trade-off with GNN performance.
Yet, the interplay between these two aspects remains unexplored.
arXiv Detail & Related papers (2023-01-30T14:52:23Z) - Trustworthy Graph Neural Networks: Aspects, Methods and Trends [115.84291569988748]
Graph neural networks (GNNs) have emerged as competent graph learning methods for diverse real-world scenarios.
Performance-oriented GNNs have exhibited potential adverse effects like vulnerability to adversarial attacks.
To avoid these unintentional harms, it is necessary to build competent GNNs characterised by trustworthiness.
arXiv Detail & Related papers (2022-05-16T02:21:09Z) - A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy,
Robustness, Fairness, and Explainability [59.80140875337769]
Graph Neural Networks (GNNs) have made rapid developments in the recent years.
GNNs can leak private information, are vulnerable to adversarial attacks, can inherit and magnify societal bias from training data.
This paper gives a comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability.
arXiv Detail & Related papers (2022-04-18T21:41:07Z) - Toward Robust Spiking Neural Network Against Adversarial Perturbation [22.56553160359798]
spiking neural networks (SNNs) are deployed increasingly in real-world efficiency critical applications.
Researchers have already demonstrated an SNN can be attacked with adversarial examples.
To the best of our knowledge, this is the first analysis on robust training of SNNs.
arXiv Detail & Related papers (2022-04-12T21:26:49Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
Bayesian Networks (BNNs) are robust and adept at handling adversarial attacks by incorporating randomness.
We create our BNN model, called BNN-DenseNet, by fusing Bayesian inference (i.e., variational Bayes) to the DenseNet architecture.
An adversarially-trained BNN outperforms its non-Bayesian, adversarially-trained counterpart in most experiments.
arXiv Detail & Related papers (2021-11-16T16:14:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.