論文の概要: Stepwise Perplexity-Guided Refinement for Efficient Chain-of-Thought Reasoning in Large Language Models
- arxiv url: http://arxiv.org/abs/2502.13260v1
- Date: Tue, 18 Feb 2025 20:04:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:02:12.937476
- Title: Stepwise Perplexity-Guided Refinement for Efficient Chain-of-Thought Reasoning in Large Language Models
- Title(参考訳): 大規模言語モデルにおける効率の良い連鎖推論のためのステップワイズパープレキシティ誘導型リファインメント
- Authors: Yingqian Cui, Pengfei He, Jingying Zeng, Hui Liu, Xianfeng Tang, Zhenwei Dai, Yan Han, Chen Luo, Jing Huang, Zhen Li, Suhang Wang, Yue Xing, Jiliang Tang, Qi He,
- Abstract要約: CoT推論は大規模言語モデル(LLM)の性能を大幅に向上させた。
本稿では,その重要性の尺度としてパープレキシティを用いた批判的推論ステップの同定手法を提案する。
- 参考スコア(独自算出の注目度): 56.37421741507468
- License:
- Abstract: Chain-of-Thought (CoT) reasoning, which breaks down complex tasks into intermediate reasoning steps, has significantly enhanced the performance of large language models (LLMs) on challenging tasks. However, the detailed reasoning process in CoT often incurs long generation times and high computational costs, partly due to the inclusion of unnecessary steps. To address this, we propose a method to identify critical reasoning steps using perplexity as a measure of their importance: a step is deemed critical if its removal causes a significant increase in perplexity. Our method enables models to focus solely on generating these critical steps. This can be achieved through two approaches: refining demonstration examples in few-shot CoT or fine-tuning the model using selected examples that include only critical steps. Comprehensive experiments validate the effectiveness of our method, which achieves a better balance between the reasoning accuracy and efficiency of CoT.
- Abstract(参考訳): 複雑なタスクを中間的推論ステップに分解するChain-of-Thought(CoT)推論は、大きな言語モデル(LLM)のパフォーマンスを大幅に向上させた。
しかし、CoTの詳細な推論プロセスは、多くの場合、不要なステップを含むため、長い世代時間と高い計算コストを発生させる。
そこで本稿では, パープレキシティを用いた重要な推論ステップを重要度として同定する手法を提案する。
我々の手法は、モデルがこれらの重要なステップを生成することだけに集中できるようにする。
これは2つのアプローチによって達成できる: 数ショットのCoTでデモ例を精錬する、あるいは重要なステップのみを含む選択された例を使ってモデルを微調整する、という方法だ。
本手法の有効性を総合的に検証し,CoTの推算精度と効率のバランスを良くする。
関連論文リスト
- Coarse-to-Fine Process Reward Modeling for Mathematical Reasoning [11.15613673478208]
プロセス・リワード・モデル (Process Reward Model, PRM) は数学的推論において重要な役割を担い、高品質なプロセスデータを必要とする。
我々は,Large Language Models (LLM) が生成する推論ステップが,厳密なインクリメンタルな情報表示に失敗することが多く,冗長性が生じることを観察する。
本稿では,冗長なステップを検出するための簡易かつ効果的な粗大な戦略CFPRMを提案する。
論文 参考訳(メタデータ) (2025-01-23T12:44:45Z) - Step-KTO: Optimizing Mathematical Reasoning through Stepwise Binary Feedback [94.25162866972077]
Step-KTOは、プロセスレベルと結果レベルのバイナリフィードバックを組み合わせたトレーニングフレームワークである。
実験の結果,Step-KTOは最終回答の精度と中間推論の質の両方を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2025-01-18T15:38:03Z) - Rethinking Chain-of-Thought from the Perspective of Self-Training [10.722453877596998]
思考の連鎖(CoT)推論はLLMの潜在能力を活性化するための効果的なアプローチとして現れている。
推論性能を改善するための新しいCoTフレームワークを提案する。
本フレームワークは,初期推論プロセスを最適化するタスク固有のプロンプトモジュールと,動的に推論プロセスを洗練させる適応推論モジュールの2つの重要なコンポーネントを統合する。
論文 参考訳(メタデータ) (2024-12-14T13:12:50Z) - Self-Harmonized Chain of Thought [8.540320749424172]
CoT(Chain-of- Thought)プロンプトは、中間ステップを通じて複雑な推論を行うための大きな言語モデルの能力を示している。
多様な解経路を一貫した効果的な推論パターンに統一する新しい手法ECHOを提案する。
論文 参考訳(メタデータ) (2024-09-06T06:57:04Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
本稿では,複数の推論連鎖を比較するためにモデルを必要とすることによって,性能を向上する新しい手法を提案する。
DCoTデータセットの命令チューニングにより、より小さく、よりアクセスしやすい言語モデルの性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-07-03T15:01:18Z) - Beyond Imitation: Learning Key Reasoning Steps from Dual Chain-of-Thoughts in Reasoning Distillation [24.272384832200522]
我々はmistaktextbfE-textbfDriven key reasontextbfIng step distillatextbfTion (textbfEDIT)を提案する。
我々は、類似の推論経路を持つ2つのCoTsデータを生成するためのプロンプトを設計する。
実験は、ドメイン内およびドメイン外のベンチマーク推論データセットの両方でEDITの有効性を検証する。
論文 参考訳(メタデータ) (2024-05-30T06:32:11Z) - Guiding Language Model Reasoning with Planning Tokens [122.43639723387516]
大規模言語モデル(LLM)は、最近、複雑な推論タスクを実行する能力に対して、かなりの関心を集めている。
より構造的なチェーン・オブ・シークレット・ステップの創出を促す階層的な生成手法を提案する。
提案手法では、トレーニング可能なパラメータ(0.001%)の無視可能な増加が必要であり、完全な微調整か、よりパラメータ効率の良いスキームで適用することができる。
論文 参考訳(メタデータ) (2023-10-09T13:29:37Z) - Ladder-of-Thought: Using Knowledge as Steps to Elevate Stance Detection [73.31406286956535]
姿勢検出タスクにLadder-of-Thought(LoT)を導入する。
LoTは、小さなLMに高品質な外部知識を同化させ、生成した中間的論理を精査するように指示する。
実験では, 姿勢検出タスクにおけるCoTのGPT-3.5よりも16%改善し, 10%向上した。
論文 参考訳(メタデータ) (2023-08-31T14:31:48Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
大規模言語モデル (LLM) は、ステップ・バイ・ステップ・チェーン・オブ・シークレット (CoT) をデモンストレーションとして組み込むことで、様々な推論タスクにおいて高い効果的な性能を達成することができる。
本稿では,イターCoT (Iterative bootstrapping in Chain-of-Thoughts Prompting) を導入する。
論文 参考訳(メタデータ) (2023-04-23T13:54:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。