論文の概要: Mol-LLaMA: Towards General Understanding of Molecules in Large Molecular Language Model
- arxiv url: http://arxiv.org/abs/2502.13449v3
- Date: Fri, 16 May 2025 04:51:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:12.273689
- Title: Mol-LLaMA: Towards General Understanding of Molecules in Large Molecular Language Model
- Title(参考訳): Mol-LLaMA:大規模分子言語モデルにおける分子の一般理解に向けて
- Authors: Dongki Kim, Wonbin Lee, Sung Ju Hwang,
- Abstract要約: Mol-LLaMAは、分子を中心とした一般的な知識を把握した大きな分子言語モデルである。
分子理解を改善するために,分子エンコーダの相補的な情報を統合するモジュールを提案する。
- 参考スコア(独自算出の注目度): 55.87790704067848
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding molecules is key to understanding organisms and driving advances in drug discovery, requiring interdisciplinary knowledge across chemistry and biology. Although large molecular language models have achieved notable success in task transfer, they often struggle to accurately analyze molecular features due to limited knowledge and reasoning capabilities. To address this issue, we present Mol-LLaMA, a large molecular language model that grasps the general knowledge centered on molecules and exhibits explainability and reasoning ability. To this end, we design key data types that encompass the fundamental molecular features, taking into account the essential abilities for molecular reasoning. Further, to improve molecular understanding, we propose a module that integrates complementary information from different molecular encoders, leveraging the distinct advantages of molecular representations. Our experimental results demonstrate that Mol-LLaMA is capable of comprehending the general features of molecules and providing informative responses, implying its potential as a general-purpose assistant for molecular analysis. Our project page is at https://mol-llama.github.io/.
- Abstract(参考訳): 分子を理解することは、生物を理解するための鍵であり、薬物発見の進歩を推進し、化学や生物学の分野間の知識を必要とする。
大きな分子言語モデルはタスク伝達において顕著な成功を収めてきたが、知識や推論能力の制限により、分子の特徴を正確に分析するのに苦労することが多い。
この問題に対処するため,分子を中心とした一般的な知識を把握し,説明可能性や推論能力を示す大規模分子言語モデルであるMol-LLaMAを提案する。
この目的のために、分子推論に必須の能力を考慮し、基本的な分子的特徴を含む重要なデータ型を設計する。
さらに,分子理解を改善するために,分子エンコーダの相補的情報を統合するモジュールを提案する。
以上の結果から,分子の一般的な特徴を解明し,分子解析のための汎用アシスタントとしての可能性を示した。
私たちのプロジェクトページはhttps://mol-llama.github.io/です。
関連論文リスト
- Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
分子グラフを不均一な分子グラフ学習(KCHML)に符号化するパラダイムシフトを提案する。
KCHMLは、不均一な分子グラフと二重メッセージパッシング機構によって強化された3つの異なるグラフビュー-分子、元素、薬理学-を通して分子を概念化する。
この設計は、プロパティ予測やドラッグ・ドラッグ・インタラクション(DDI)予測などの下流タスクに対する包括的な表現を提供する。
論文 参考訳(メタデータ) (2025-02-17T11:53:58Z) - Learning Multi-view Molecular Representations with Structured and Unstructured Knowledge [14.08112359246334]
本稿では, 化学構造から多視点分子知識を抽出する表現学習モデルMV-Mol, バイオメディカルテキストからの非構造化知識, 知識グラフからの構造化知識について述べる。
MV-Molは分子特性予測に有効であることを示す。
論文 参考訳(メタデータ) (2024-06-14T08:48:10Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
本稿では,学生に類似した多制約分子生成大言語モデルTSMMGを紹介する。
TSMMGを訓練するために、これらの「教師」から分子知識を抽出し、大量のテキスト-分子対を構築する。
我々は,TSMMGが複雑で自然言語で記述された特性を満たす分子を生成できることを実験的に明らかにした。
論文 参考訳(メタデータ) (2024-03-20T02:15:55Z) - Interactive Molecular Discovery with Natural Language [69.89287960545903]
対象分子を記述・編集するための自然言語を用いた対話型分子設計を提案する。
この課題をより良くするために、実験プロパティ情報を注入することによって強化された知識的で汎用的な生成事前学習モデルChatMolを設計する。
論文 参考訳(メタデータ) (2023-06-21T02:05:48Z) - Mol-Instructions: A Large-Scale Biomolecular Instruction Dataset for
Large Language Models [44.41299105569085]
Mol-Instructionsは、生体分子ドメイン用に設計された包括的な命令データセットである。
各コンポーネントは、生体分子の特徴や行動に関するLCMの理解と予測能力を改善することを目的としている。
生体分子研究の複雑な領域における大規模モデルの性能向上におけるモールインストラクションの有効性を実証する。
論文 参考訳(メタデータ) (2023-06-13T14:35:34Z) - Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective [53.300288393173204]
大規模言語モデル(LLM)は、様々なクロスモーダルタスクにおいて顕著なパフォーマンスを示している。
本研究では,分子カプセル翻訳のためのインコンテキストFew-Shot Molecule Learningパラダイムを提案する。
分子理解とテキストベースの分子生成を含む分子キャプション翻訳におけるMollReGPTの有効性を評価する。
論文 参考訳(メタデータ) (2023-06-11T08:16:25Z) - MolFM: A Multimodal Molecular Foundation Model [9.934141536012596]
MolFMは分子構造、バイオメディカルテキスト、知識グラフからの共同表現学習を容易にするために設計された多モード分子基盤モデルである。
我々は,同分子の異なるモジュラリティ間の特徴空間における距離を最小化することにより,我々のクロスモーダル事前学習が局所的および大域的分子知識を捕捉する理論解析を行う。
クロスモーダル検索では、MolFMは既存のモデルよりも12.13%、絶対利得は5.04%、ゼロショットと微調整がそれぞれ優れている。
論文 参考訳(メタデータ) (2023-06-06T12:45:15Z) - Domain-Agnostic Molecular Generation with Chemical Feedback [44.063584808910896]
MolGenは、分子生成に特化した事前訓練された分子言語モデルである。
1億以上の分子SELFIESを再構成することで構造的および文法的な洞察を内部化する。
我々の化学フィードバックパラダイムは、モデルを分子幻覚から遠ざけ、モデルの推定確率と実世界の化学的嗜好との整合性を確保する。
論文 参考訳(メタデータ) (2023-01-26T17:52:56Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。