Towards Lightweight, Adaptive and Attribute-Aware Multi-Aspect Controllable Text Generation with Large Language Models
- URL: http://arxiv.org/abs/2502.13474v1
- Date: Wed, 19 Feb 2025 06:56:02 GMT
- Title: Towards Lightweight, Adaptive and Attribute-Aware Multi-Aspect Controllable Text Generation with Large Language Models
- Authors: Chenyu Zhu, Yefeng Liu, Chenyang Lyu, Xue Yang, Guanhua Chen, Longyue Wang, Weihua Luo, Kaifu Zhang,
- Abstract summary: Multi-aspect controllable text generation aims to control text generation in attributes from multiple aspects.
Supervised fine-tuning methods are often employed for this task due to their simplicity and effectiveness.
We propose a lightweight, adaptive and attribute-aware framework for multi-aspect controllable text generation.
- Score: 40.54453001537357
- License:
- Abstract: Multi-aspect controllable text generation aims to control text generation in attributes from multiple aspects, making it a complex but powerful task in natural language processing. Supervised fine-tuning methods are often employed for this task due to their simplicity and effectiveness. However, they still have some limitations: low rank adaptation (LoRA) only fine-tunes a few parameters and has suboptimal control effects, while full fine-tuning (FFT) requires significant computational resources and is susceptible to overfitting, particularly when data is limited. Moreover, existing works typically train multi-aspect controllable text generation models using only single-aspect annotated data, which results in discrepancies in data distribution; at the same time, accurately generating text with specific attributes is a challenge that requires strong attribute-aware capabilities. To address these limitations, we propose a lightweight, adaptive and attribute-aware framework for multi-aspect controllable text generation. Our framework can dynamically adjust model parameters according to different aspects of data to achieve controllable text generation, aiming to optimize performance across multiple aspects. Experimental results show that our framework outperforms other strong baselines, achieves state-of-the-art performance, adapts well to data discrepancies, and is more accurate in attribute perception.
Related papers
- Multi-Attribute Constraint Satisfaction via Language Model Rewriting [67.5778646504987]
Multi-Attribute Constraint Satisfaction (MACS) is a method capable of finetuning language models to satisfy user-specified constraints on multiple external real-value attributes.
Our work opens new avenues for generalized and real-value multi-attribute control, with implications for diverse applications spanning NLP and bioinformatics.
arXiv Detail & Related papers (2024-12-26T12:36:39Z) - P-Masking: Power Law Masking Improves Multi-attribute Controlled Generation [14.763505073094779]
LingGen is a novel approach for controlled text generation that offers precise control over a wide array of linguistic attributes.
LingGen employs a dynamic P-MASKING strategy, which samples masking rates from a power law distribution during training.
Experiments demonstrate that LingGen surpasses current state-of-the-art models in both attribute control accuracy and text fluency.
arXiv Detail & Related papers (2024-10-31T17:55:45Z) - Text2Data: Low-Resource Data Generation with Textual Control [100.5970757736845]
Text2Data is a novel approach that utilizes unlabeled data to understand the underlying data distribution.
It undergoes finetuning via a novel constraint optimization-based learning objective that ensures controllability and effectively counteracts catastrophic forgetting.
arXiv Detail & Related papers (2024-02-08T03:41:39Z) - Successor Features for Efficient Multisubject Controlled Text Generation [48.37713738712319]
We introduce SF-GEN, which is grounded in two primary concepts: successor features (SFs) and language model rectification.
SF-GEN seamlessly integrates the two to enable dynamic steering of text generation with no need to alter the LLM's parameters.
To the best of our knowledge, our research represents the first application of successor features in text generation.
arXiv Detail & Related papers (2023-11-03T00:17:08Z) - Air-Decoding: Attribute Distribution Reconstruction for Decoding-Time
Controllable Text Generation [58.911255139171075]
Controllable text generation (CTG) aims to generate text with desired attributes.
We propose a novel lightweight decoding framework named Air-Decoding.
Our method achieves a new state-of-the-art control performance.
arXiv Detail & Related papers (2023-10-23T12:59:11Z) - MacLaSa: Multi-Aspect Controllable Text Generation via Efficient
Sampling from Compact Latent Space [110.85888003111653]
Multi-aspect controllable text generation aims to generate fluent sentences that possess multiple desired attributes simultaneously.
We introduce a novel approach for multi-aspect control, namely MacLaSa, that estimates compact latent space for multiple aspects.
We show that MacLaSa outperforms several strong baselines on attribute relevance and textual quality while maintaining a high inference speed.
arXiv Detail & Related papers (2023-05-22T07:30:35Z) - Semantic Space Grounded Weighted Decoding for Multi-Attribute
Controllable Dialogue Generation [41.23970507903113]
We propose a novel framework called DASC that possesses strong controllability with a weighted decoding paradigm.
Generation with multiple attributes is then intuitively implemented with an utterance of multiple attribute embeddings.
Experiments show that DASC can achieve high control accuracy in generation task with the simultaneous control of 3 aspects.
arXiv Detail & Related papers (2023-05-04T13:35:27Z) - Controlled Text Generation as Continuous Optimization with Multiple
Constraints [23.71027518888138]
We propose a flexible and modular algorithm for controllable inference from pretrained models.
We make use of Lagrangian multipliers and gradient-descent based techniques to generate the desired text.
We evaluate our approach on controllable machine translation and style transfer with multiple sentence-level attributes.
arXiv Detail & Related papers (2021-08-04T05:25:20Z) - Attribute Alignment: Controlling Text Generation from Pre-trained
Language Models [46.19190007510232]
We propose a simple and flexible method for controlling text generation by aligning disentangled attribute representations.
In contrast to recent efforts on training a discriminator to perturb the token level distribution for an attribute, we use the same data to learn an alignment function to guide the pre-trained, non-controlled language model to generate texts with the target attribute without changing the original language model parameters.
arXiv Detail & Related papers (2021-03-20T01:51:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.