Text2Data: Low-Resource Data Generation with Textual Control
- URL: http://arxiv.org/abs/2402.10941v2
- Date: Thu, 02 Jan 2025 17:47:09 GMT
- Title: Text2Data: Low-Resource Data Generation with Textual Control
- Authors: Shiyu Wang, Yihao Feng, Tian Lan, Ning Yu, Yu Bai, Ran Xu, Huan Wang, Caiming Xiong, Silvio Savarese,
- Abstract summary: Text2Data is a novel approach that utilizes unlabeled data to understand the underlying data distribution.
It undergoes finetuning via a novel constraint optimization-based learning objective that ensures controllability and effectively counteracts catastrophic forgetting.
- Score: 100.5970757736845
- License:
- Abstract: Natural language serves as a common and straightforward signal for humans to interact seamlessly with machines. Recognizing the importance of this interface, the machine learning community is investing considerable effort in generating data that is semantically coherent with textual instructions. While strides have been made in text-to-data generation spanning image editing, audio synthesis, video creation, and beyond, low-resource areas characterized by expensive annotations or complex data structures, such as molecules, motion dynamics, and time series, often lack textual labels. This deficiency impedes supervised learning, thereby constraining the application of advanced generative models for text-to-data tasks. In response to these challenges in the low-resource scenario, we propose Text2Data, a novel approach that utilizes unlabeled data to understand the underlying data distribution through an unsupervised diffusion model. Subsequently, it undergoes controllable finetuning via a novel constraint optimization-based learning objective that ensures controllability and effectively counteracts catastrophic forgetting. Comprehensive experiments demonstrate that Text2Data is able to achieve enhanced performance regarding controllability across various modalities, including molecules, motions and time series, when compared to existing baselines.
Related papers
- READ: Reinforcement-based Adversarial Learning for Text Classification with Limited Labeled Data [7.152603583363887]
Pre-trained transformer models such as BERT have shown massive gains across many text classification tasks.
This paper proposes a method that encapsulates reinforcement learning-based text generation and semi-supervised adversarial learning approaches.
Our method READ, Reinforcement-based Adversarial learning, utilizes an unlabeled dataset to generate diverse synthetic text through reinforcement learning.
arXiv Detail & Related papers (2025-01-14T11:39:55Z) - Enhancing Text Generation in Joint NLG/NLU Learning Through Curriculum Learning, Semi-Supervised Training, and Advanced Optimization Techniques [0.0]
This research paper developed a novel approach to improve text generation in the context of joint Natural Language Generation (NLG) and Natural Language Understanding (NLU) learning.
The data is prepared by gathering and preprocessing annotated datasets, including cleaning, tokenization, stemming, and stop-word removal.
Transformer-based encoders and decoders, capturing long range dependencies and improving source-target sequence modelling.
Reinforcement learning with policy gradient techniques, semi-supervised training, improved attention mechanisms, and differentiable approximations are employed to fine-tune the models and handle complex linguistic tasks effectively.
arXiv Detail & Related papers (2024-10-17T12:43:49Z) - Joint-Dataset Learning and Cross-Consistent Regularization for Text-to-Motion Retrieval [4.454835029368504]
We focus on the recently introduced text-motion retrieval which aim to search for sequences that are most relevant to a natural motion description.
Despite recent efforts to explore these promising avenues, a primary challenge remains the insufficient data available to train robust text-motion models.
We propose to investigate joint-dataset learning - where we train on multiple text-motion datasets simultaneously.
We also introduce a transformer-based motion encoder, called MoT++, which employs the specified-temporal attention to process sequences of skeleton data.
arXiv Detail & Related papers (2024-07-02T09:43:47Z) - Learning Generalizable Human Motion Generator with Reinforcement Learning [95.62084727984808]
Text-driven human motion generation is one of the vital tasks in computer-aided content creation.
Existing methods often overfit specific motion expressions in the training data, hindering their ability to generalize.
We present textbfInstructMotion, which incorporate the trail and error paradigm in reinforcement learning for generalizable human motion generation.
arXiv Detail & Related papers (2024-05-24T13:29:12Z) - Boosting Event Extraction with Denoised Structure-to-Text Augmentation [52.21703002404442]
Event extraction aims to recognize pre-defined event triggers and arguments from texts.
Recent data augmentation methods often neglect the problem of grammatical incorrectness.
We propose a denoised structure-to-text augmentation framework for event extraction DAEE.
arXiv Detail & Related papers (2023-05-16T16:52:07Z) - Leveraging Natural Supervision for Language Representation Learning and
Generation [8.083109555490475]
We describe three lines of work that seek to improve the training and evaluation of neural models using naturally-occurring supervision.
We first investigate self-supervised training losses to help enhance the performance of pretrained language models for various NLP tasks.
We propose a framework that uses paraphrase pairs to disentangle semantics and syntax in sentence representations.
arXiv Detail & Related papers (2022-07-21T17:26:03Z) - Curriculum-Based Self-Training Makes Better Few-Shot Learners for
Data-to-Text Generation [56.98033565736974]
We propose Curriculum-Based Self-Training (CBST) to leverage unlabeled data in a rearranged order determined by the difficulty of text generation.
Our method can outperform fine-tuning and task-adaptive pre-training methods, and achieve state-of-the-art performance in the few-shot setting of data-to-text generation.
arXiv Detail & Related papers (2022-06-06T16:11:58Z) - Data-to-text Generation with Macro Planning [61.265321323312286]
We propose a neural model with a macro planning stage followed by a generation stage reminiscent of traditional methods.
Our approach outperforms competitive baselines in terms of automatic and human evaluation.
arXiv Detail & Related papers (2021-02-04T16:32:57Z) - Partially-Aligned Data-to-Text Generation with Distant Supervision [69.15410325679635]
We propose a new generation task called Partially-Aligned Data-to-Text Generation (PADTG)
It is more practical since it utilizes automatically annotated data for training and thus considerably expands the application domains.
Our framework outperforms all baseline models as well as verify the feasibility of utilizing partially-aligned data.
arXiv Detail & Related papers (2020-10-03T03:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.