論文の概要: Model Evolution Framework with Genetic Algorithm for Multi-Task Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2502.13569v1
- Date: Wed, 19 Feb 2025 09:22:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:59:59.848549
- Title: Model Evolution Framework with Genetic Algorithm for Multi-Task Reinforcement Learning
- Title(参考訳): 遺伝的アルゴリズムを用いたマルチタスク強化学習のためのモデル進化フレームワーク
- Authors: Yan Yu, Wengang Zhou, Yaodong Yang, Wanxuan Lu, Yingyan Hou, Houqiang Li,
- Abstract要約: マルチタスク強化学習は、様々なシナリオにまたがって一般化可能なエージェントを開発することを目的として、様々なタスクを完遂するために単一のポリシーを採用する。
既存のアプローチでは、ルーティングネットワークを使用して各タスクの特定のルートを生成し、モジュールのセットをさまざまなモデルに再構築し、複数のタスクを同時に完了させるのが一般的である。
本稿では,遺伝的アルゴリズム(MEGA)を用いたモデル進化フレームワークを提案する。
- 参考スコア(独自算出の注目度): 85.91908329457081
- License:
- Abstract: Multi-task reinforcement learning employs a single policy to complete various tasks, aiming to develop an agent with generalizability across different scenarios. Given the shared characteristics of tasks, the agent's learning efficiency can be enhanced through parameter sharing. Existing approaches typically use a routing network to generate specific routes for each task and reconstruct a set of modules into diverse models to complete multiple tasks simultaneously. However, due to the inherent difference between tasks, it is crucial to allocate resources based on task difficulty, which is constrained by the model's structure. To this end, we propose a Model Evolution framework with Genetic Algorithm (MEGA), which enables the model to evolve during training according to the difficulty of the tasks. When the current model is insufficient for certain tasks, the framework will automatically incorporate additional modules, enhancing the model's capabilities. Moreover, to adapt to our model evolution framework, we introduce a genotype module-level model, using binary sequences as genotype policies for model reconstruction, while leveraging a non-gradient genetic algorithm to optimize these genotype policies. Unlike routing networks with fixed output dimensions, our approach allows for the dynamic adjustment of the genotype policy length, enabling it to accommodate models with a varying number of modules. We conducted experiments on various robotics manipulation tasks in the Meta-World benchmark. Our state-of-the-art performance demonstrated the effectiveness of the MEGA framework. We will release our source code to the public.
- Abstract(参考訳): マルチタスク強化学習は、様々なシナリオにまたがって一般化可能なエージェントを開発することを目的として、様々なタスクを完遂するために単一のポリシーを採用する。
タスクの共有特性を考えると、エージェントの学習効率はパラメータ共有によって向上できる。
既存のアプローチでは、ルーティングネットワークを使用して各タスクの特定のルートを生成し、モジュールのセットをさまざまなモデルに再構築し、複数のタスクを同時に完了させるのが一般的である。
しかし,タスク間の本質的に異なるため,モデルの構造に制約されるタスク難易度に基づいてリソースを割り当てることが重要である。
そこで本研究では,遺伝的アルゴリズム(MEGA)を用いたモデル進化フレームワークを提案する。
現在のモデルが特定のタスクに不十分な場合、フレームワークは自動的に追加モジュールを追加し、モデルの能力を高める。
さらに, モデル進化の枠組みに適応するため, モデル再構成のためのジェノタイプポリシーとしてバイナリ配列を用いたジェノタイプモジュールレベルモデルを導入し, 遺伝的アルゴリズムを用いてこれらのジェノタイプポリシーを最適化する。
固定出力次元のルーティングネットワークとは異なり、我々の手法はジェノタイプポリシー長の動的調整を可能にし、モジュール数の異なるモデルに対応できる。
メタワールドベンチマークにおいて,様々なロボット操作タスクの実験を行った。
我々の最先端性能はMEGAフレームワークの有効性を示した。
私たちはソースコードを公開します。
関連論文リスト
- No Task Left Behind: Isotropic Model Merging with Common and Task-Specific Subspaces [17.69597528370121]
モデルマージは、複数のタスク固有のモデルの重みを単一のマルチタスクモデルに統合する。
この問題に対する最近の関心にもかかわらず、シングルタスクモデルと組み合わせたモデルの間には大きなパフォーマンスギャップが残っている。
タスク固有成分とマージ行列の特異成分のアライメントは,性能改善と強く相関していることを示す。
論文 参考訳(メタデータ) (2025-02-07T14:22:56Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - Generative Model for Models: Rapid DNN Customization for Diverse Tasks
and Resource Constraints [28.983470365172057]
NN-Factoryは、さまざまなエッジシナリオ用にカスタマイズされた軽量モデルを生成する、オールツーオールのフレームワークである。
NN-Factoryの主なコンポーネントは、異なるタスクを達成するために条件付きアクティベート可能な、事前訓練されたモジュールを備えたモジュラースーパーネットである。
NN-Factoryは、従来のモデルのカスタマイズアプローチよりも桁違いに高速で、数秒で高品質なタスクやリソース固有のモデルを生成することができる。
論文 参考訳(メタデータ) (2023-08-29T03:28:14Z) - Multi-Domain Learning with Modulation Adapters [33.54630534228469]
マルチドメイン学習は、複数のドメインにまたがる画像分類など、関連するタスクを同時に処理することを目的としている。
変調アダプタは、各タスクに対して乗法的にモデルの畳み込み重みを更新する。
我々のアプローチは、既存の最先端のアプローチと同等かそれ以上の精度で、優れた結果をもたらす。
論文 参考訳(メタデータ) (2023-07-17T14:40:16Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
本稿では、複数の視覚タスクを実行でき、他の下流タスクに効率的に適応できるモデルを提案する。
提案手法は,単一タスク状態モデルに匹敵する結果を達成し,下流タスクの強力な一般化を実証する。
論文 参考訳(メタデータ) (2023-06-29T17:59:57Z) - Self-Supervised Reinforcement Learning that Transfers using Random
Features [41.00256493388967]
本研究では,タスク間の行動の伝達を,報酬の異なる自己指導型強化学習手法を提案する。
我々の手法は、報奨ラベルなしでオフラインデータセットでトレーニングできるが、新しいタスクに素早くデプロイできるという自己教師型である。
論文 参考訳(メタデータ) (2023-05-26T20:37:06Z) - OFASys: A Multi-Modal Multi-Task Learning System for Building Generalist
Models [72.8156832931841]
ジェネリストモデルは、単一のモデル内でタスクに依存しない方法で多様なマルチモーダルタスクを実行することができる。
マルチモーダル命令と呼ばれる宣言型タスクインタフェース上に構築された汎用モデル学習システムOFASysをリリースする。
論文 参考訳(メタデータ) (2022-12-08T17:07:09Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
そこで本研究では,対象モデルからより高速に学習するための代用モデルの促進を目的とした,新しい動的代用トレーニング攻撃手法を提案する。
タスク駆動型グラフに基づく構造情報学習の制約を導入し、生成したトレーニングデータの質を向上させる。
論文 参考訳(メタデータ) (2022-04-03T02:29:11Z) - HyperTransformer: Model Generation for Supervised and Semi-Supervised
Few-Shot Learning [14.412066456583917]
本稿では,支援サンプルから直接畳み込みニューラルネットワーク(CNN)の重みを生成する,少数ショット学習のためのトランスフォーマーベースモデルを提案する。
本手法は,タスク非依存の定型埋め込みの学習が最適でない小ターゲットCNNアーキテクチャにおいて,特に有効である。
提案手法は,サポートセット内のラベルなしサンプルを利用した半教師付きシステムに拡張され,さらにショット性能が向上する。
論文 参考訳(メタデータ) (2022-01-11T20:15:35Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。