Beyond One-Size-Fits-All: Tailored Benchmarks for Efficient Evaluation
- URL: http://arxiv.org/abs/2502.13576v1
- Date: Wed, 19 Feb 2025 09:31:50 GMT
- Title: Beyond One-Size-Fits-All: Tailored Benchmarks for Efficient Evaluation
- Authors: Peiwen Yuan, Yueqi Zhang, Shaoxiong Feng, Yiwei Li, Xinglin Wang, Jiayi Shi, Chuyi Tan, Boyuan Pan, Yao Hu, Kan Li,
- Abstract summary: We present TailoredBench, a method that conducts customized evaluation tailored to each target model.
A Global-coreset is first constructed as a probe to identify the most consistent source models for each target model.
A scalable K-Medoids clustering algorithm is proposed to extend the Global-coreset to a tailored Native-coreset for each target model.
- Score: 19.673388630963807
- License:
- Abstract: Evaluating models on large benchmarks is very resource-intensive, especially during the period of rapid model evolution. Existing efficient evaluation methods estimate the performance of target models by testing them only on a small and static coreset of the benchmark, which is derived from the publicly available evaluation results of source models. These methods rely on the assumption that target models have high prediction consistency with source models. However, we demonstrate that it doesn't generalize well in practice. To alleviate the inconsistency issue, we present TailoredBench, a method that conducts customized evaluation tailored to each target model. Specifically, a Global-coreset is first constructed as a probe to identify the most consistent source models for each target model with an adaptive source model selection strategy. Afterwards, a scalable K-Medoids clustering algorithm is proposed to extend the Global-coreset to a tailored Native-coreset for each target model. According to the predictions on Native-coresets, we obtain the performance of target models on the whole benchmark with a calibrated estimation strategy. Comprehensive experiments on 5 benchmarks across over 300 models demonstrate that compared to best performing baselines, TailoredBench achieves an average reduction of 31.4% in MAE of accuracy estimates under the same inference budgets, showcasing strong effectiveness and generalizability.
Related papers
- A Framework for Efficient Model Evaluation through Stratification, Sampling, and Estimation [17.351089059392674]
We propose a framework for model evaluation that includes stratification, sampling, and estimation components.
We show that stratification via k-means clustering based on accurate predictions of model performance yields efficient estimators.
We also find that model-assisted estimators, which leverage predictions of model accuracy on the unlabeled portion of the dataset, are generally more efficient than the traditional estimates.
arXiv Detail & Related papers (2024-06-11T14:49:04Z) - Selective Mixup Fine-Tuning for Optimizing Non-Decomposable Objectives [17.10165955576643]
Current state-of-the-art empirical techniques offer sub-optimal performance on practical, non-decomposable performance objectives.
We propose SelMix, a selective mixup-based inexpensive fine-tuning technique for pre-trained models.
We find that proposed SelMix fine-tuning significantly improves the performance for various practical non-decomposable objectives across benchmarks.
arXiv Detail & Related papers (2024-03-27T06:55:23Z) - Anchor Points: Benchmarking Models with Much Fewer Examples [88.02417913161356]
In six popular language classification benchmarks, model confidence in the correct class on many pairs of points is strongly correlated across models.
We propose Anchor Point Selection, a technique to select small subsets of datasets that capture model behavior across the entire dataset.
Just several anchor points can be used to estimate model per-class predictions on all other points in a dataset with low mean absolute error.
arXiv Detail & Related papers (2023-09-14T17:45:51Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of Open Information Extraction [49.15931834209624]
We present the first benchmark that simulates the evaluation of open information extraction models in the real world.
We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique.
By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques.
arXiv Detail & Related papers (2023-05-23T12:05:09Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
We present a new framework, called GREAT Score, for global robustness evaluation of adversarial perturbation using generative models.
We show high correlation and significantly reduced cost of GREAT Score when compared to the attack-based model ranking on RobustBench.
GREAT Score can be used for remote auditing of privacy-sensitive black-box models.
arXiv Detail & Related papers (2023-04-19T14:58:27Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
In this paper, we propose to use the Minimum Description Length (MDL) principle to devise an evaluation metric.
We design a hybrid discrete and continuous-valued model space for the readout models and employ a switching strategy to combine their predictions.
The proposed metric can be efficiently computed with an online method and we present results for pre-trained vision encoders of various architectures.
arXiv Detail & Related papers (2023-02-19T14:08:01Z) - Post-Selection Confidence Bounds for Prediction Performance [2.28438857884398]
In machine learning, the selection of a promising model from a potentially large number of competing models and the assessment of its generalization performance are critical tasks.
We propose an algorithm how to compute valid lower confidence bounds for multiple models that have been selected based on their prediction performances in the evaluation set.
arXiv Detail & Related papers (2022-10-24T13:28:43Z) - Model-based metrics: Sample-efficient estimates of predictive model
subpopulation performance [11.994417027132807]
Machine learning models $-$ now commonly developed to screen, diagnose, or predict health conditions are evaluated with a variety of performance metrics.
Subpopulation performance metrics are typically computed using only data from that subgroup, resulting in higher variance estimates for smaller groups.
We propose using an evaluation model $-$ a model that describes the conditional distribution of the predictive model score $-$ to form model-based metric (MBM) estimates.
arXiv Detail & Related papers (2021-04-25T19:06:34Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.