論文の概要: Multi-Target Radar Search and Track Using Sequence-Capable Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2502.13584v1
- Date: Wed, 19 Feb 2025 09:55:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:58:38.663089
- Title: Multi-Target Radar Search and Track Using Sequence-Capable Deep Reinforcement Learning
- Title(参考訳): シーケンス能力を有する深層強化学習を用いたマルチターゲットレーダ探索と追跡
- Authors: Jan-Hendrik Ewers, David Cormack, Joe Gibbs, David Anderson,
- Abstract要約: この研究はレーダーシステムのセンサタスク管理に対処する。
強化学習を用いて、複数のターゲットを効率的に探索し、追跡することに焦点を当てている。
重要な貢献は、強化学習がセンサー管理をどのように最適化できるかを示すことである。
- 参考スコア(独自算出の注目度): 0.26999000177990923
- License:
- Abstract: The research addresses sensor task management for radar systems, focusing on efficiently searching and tracking multiple targets using reinforcement learning. The approach develops a 3D simulation environment with an active electronically scanned array radar, using a multi-target tracking algorithm to improve observation data quality. Three neural network architectures were compared including an approach using fated recurrent units with multi-headed self-attention. Two pre-training techniques were applied: behavior cloning to approximate a random search strategy and an auto-encoder to pre-train the feature extractor. Experimental results revealed that search performance was relatively consistent across most methods. The real challenge emerged in simultaneously searching and tracking targets. The multi-headed self-attention architecture demonstrated the most promising results, highlighting the potential of sequence-capable architectures in handling dynamic tracking scenarios. The key contribution lies in demonstrating how reinforcement learning can optimize sensor management, potentially improving radar systems' ability to identify and track multiple targets in complex environments.
- Abstract(参考訳): この研究はレーダーシステムのセンサタスク管理に対処し、強化学習を用いて複数のターゲットを効率的に探索・追跡することに焦点を当てた。
マルチターゲット追跡アルゴリズムを用いて,アクティブな電子走査アレイレーダを用いた3次元シミュレーション環境を構築し,観測データの品質を向上させる。
3つのニューラルネットワークアーキテクチャを比較した。
ランダムな探索戦略を近似するための行動クローニングと,特徴抽出器を事前訓練するためのオートエンコーダの2つの事前学習手法が適用された。
実験の結果,ほとんどの手法で検索性能が比較的一貫していることが判明した。
真の課題は、ターゲットの検索と追跡を同時に行うことだった。
マルチヘッドのセルフアテンションアーキテクチャが最も有望な結果を示し、動的トラッキングシナリオを扱う上でのシーケンス対応アーキテクチャの可能性を強調した。
重要な貢献は、強化学習がセンサー管理を最適化する方法を実証することであり、複雑な環境で複数のターゲットを特定し追跡するレーダーシステムの能力を改善する可能性がある。
関連論文リスト
- A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Trackingは、視覚的な観察に基づいてモーションシステムを制御することで、対象物を自律的に追跡することを目的としている。
DATと呼ばれるオープンワールドドローンアクティブトラッキングのためのクロスシーンクロスドメインベンチマークを提案する。
また、R-VATと呼ばれる強化学習に基づくドローン追跡手法を提案する。
論文 参考訳(メタデータ) (2024-12-01T09:37:46Z) - Deep Learning-Based Robust Multi-Object Tracking via Fusion of mmWave Radar and Camera Sensors [6.166992288822812]
複雑なトラフィックシナリオを通じて、より安全で効率的なナビゲーションを実現する上で、マルチオブジェクトトラッキングは重要な役割を果たす。
本稿では,自律走行システムにおける複数物体追跡の精度とロバスト性を高めるために,レーダデータとカメラデータを統合した新しいディープラーニング方式を提案する。
論文 参考訳(メタデータ) (2024-07-10T21:09:09Z) - Multi-Object Tracking based on Imaging Radar 3D Object Detection [0.13499500088995461]
本稿では,古典的追跡アルゴリズムを用いて,周囲の交通参加者を追跡する手法を提案する。
学習に基づく物体検出器はライダーとカメラのデータに適切に対応し、学習に基づく物体検出器は標準のレーダーデータ入力により劣っていることが示されている。
レーダセンサ技術の改良により、レーダの物体検出性能は大幅に改善されたが、レーダ点雲の広さによりライダーセンサに制限されている。
追跡アルゴリズムは、一貫したトラックを生成しながら、限られた検出品質を克服しなければならない。
論文 参考訳(メタデータ) (2024-06-03T05:46:23Z) - Cross-domain Learning Framework for Tracking Users in RIS-aided Multi-band ISAC Systems with Sparse Labeled Data [55.70071704247794]
統合センシング・通信(ISAC)は6G通信において重要であり、再構成可能なインテリジェントサーフェス(RIS)の急速な発展によって促進される
本稿では,複数の帯域にまたがるマルチモーダルCSIインジケータを協調的に活用し,クロスドメイン方式で追跡機能をモデル化するX2Trackフレームワークを提案する。
X2Trackの下では、トランスフォーマーニューラルネットワークと逆学習技術に基づいて、トラッキングエラーを最小限に抑える効率的なディープラーニングアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-05-10T08:04:27Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
複数の物体追跡は、自律運転において重要な課題である。
トラッキングの精度が向上するにつれて、ニューラルネットワークはますます複雑になり、レイテンシが高いため、実際の運転シナリオにおける実践的な応用に課題が生じる。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法を用いて追跡のための効率的なアーキテクチャを探索し,比較的高い精度を維持しつつ,低リアルタイム遅延を実現することを目的とした。
論文 参考訳(メタデータ) (2024-03-23T04:18:49Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Identifying Coordination in a Cognitive Radar Network -- A
Multi-Objective Inverse Reinforcement Learning Approach [30.65529797672378]
本稿では,レーダ間のコーディネーションを検出するために,新しい多目的逆強化学習手法を提案する。
また、多目的最適化システムの逆検出と学習に関するより一般的な問題にも適用できる。
論文 参考訳(メタデータ) (2022-11-13T17:27:39Z) - Correlation-Aware Deep Tracking [83.51092789908677]
本稿では,自己/横断的意図に着想を得た,新たなターゲット依存型特徴ネットワークを提案する。
我々のネットワークは機能ネットワークの複数の層にクロスイメージの特徴相関を深く埋め込んでいる。
我々のモデルは、豊富な未ペア画像に対して柔軟に事前訓練が可能であり、既存の手法よりも顕著に高速な収束をもたらす。
論文 参考訳(メタデータ) (2022-03-03T11:53:54Z) - Deep Feature Tracker: A Novel Application for Deep Convolutional Neural
Networks [0.0]
本稿では,特徴を確実に追跡する方法を学習できる,新しい,統合されたディープラーニングベースのアプローチを提案する。
Deep-PTと呼ばれる提案ネットワークは、畳み込みニューラルネットワークの相互相関であるトラッカーネットワークで構成されている。
ネットワークは、特徴追跡データセットに特別なデータセットがないため、複数のデータセットを使用してトレーニングされている。
論文 参考訳(メタデータ) (2021-07-30T23:24:29Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
本稿では,レーダとカメラセンサの融合に基づく共同物体検出と追跡のためのエンドツーエンドネットワークを提案する。
提案手法では,物体検出に中心型レーダカメラ融合アルゴリズムを用い,物体関連にグリーディアルゴリズムを用いる。
提案手法は,20.0AMOTAを達成し,ベンチマークにおける視覚ベースの3Dトラッキング手法よりも優れる,挑戦的なnuScenesデータセット上で評価する。
論文 参考訳(メタデータ) (2021-07-11T23:56:53Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
実用的長期トラッカーは、典型的には3つの重要な特性を含む。
効率的なモデル設計、効果的なグローバル再検出戦略、堅牢な気晴らし認識メカニズム。
動的畳み込み (d-convs) と多重オブジェクト追跡 (MOT) の哲学を用いて, 注意をそらした高速トラッキングを実現するための2タスクトラッキングフレームワーク(DMTrack)を提案する。
我々のトラッカーはLaSOT, OxUvA, TLP, VOT2018LT, VOT 2019LTベンチマークの最先端性能を実現し, リアルタイム3倍高速に動作させる。
論文 参考訳(メタデータ) (2021-04-25T00:59:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。