Concept Layers: Enhancing Interpretability and Intervenability via LLM Conceptualization
- URL: http://arxiv.org/abs/2502.13632v1
- Date: Wed, 19 Feb 2025 11:10:19 GMT
- Title: Concept Layers: Enhancing Interpretability and Intervenability via LLM Conceptualization
- Authors: Or Raphael Bidusa, Shaul Markovitch,
- Abstract summary: We introduce a new methodology for incorporating interpretability and intervenability into an existing model by integrating Concept Layers into its architecture.
Our approach projects the model's internal vector representations into a conceptual, explainable vector space before reconstructing and feeding them back into the model.
We evaluate CLs across multiple tasks, demonstrating that they maintain the original model's performance and agreement while enabling meaningful interventions.
- Score: 2.163881720692685
- License:
- Abstract: The opaque nature of Large Language Models (LLMs) has led to significant research efforts aimed at enhancing their interpretability, primarily through post-hoc methods. More recent in-hoc approaches, such as Concept Bottleneck Models (CBMs), offer both interpretability and intervenability by incorporating explicit concept representations. However, these methods suffer from key limitations, including reliance on labeled concept datasets and significant architectural modifications that challenges re-integration into existing system pipelines. In this work, we introduce a new methodology for incorporating interpretability and intervenability into an existing model by integrating Concept Layers (CLs) into its architecture. Our approach projects the model's internal vector representations into a conceptual, explainable vector space before reconstructing and feeding them back into the model. Furthermore, we eliminate the need for a human-selected concept set by algorithmically searching an ontology for a set of concepts that can be either task-specific or task-agnostic. We evaluate CLs across multiple tasks, demonstrating that they maintain the original model's performance and agreement while enabling meaningful interventions. Additionally, we present a proof of concept showcasing an intervenability interface, allowing users to adjust model behavior dynamically, such as mitigating biases during inference.
Related papers
- Self-supervised Interpretable Concept-based Models for Text Classification [9.340843984411137]
This paper proposes a self-supervised Interpretable Concept Embedding Models (ICEMs)
We leverage the generalization abilities of Large-Language Models to predict the concepts labels in a self-supervised way.
ICEMs can be trained in a self-supervised way achieving similar performance to fully supervised concept-based models and end-to-end black-box ones.
arXiv Detail & Related papers (2024-06-20T14:04:53Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
This paper presents a novel concept learning framework for enhancing model interpretability and performance in visual classification tasks.
Our approach appends an unsupervised explanation generator to the primary classifier network and makes use of adversarial training.
This work presents a significant step towards building inherently interpretable deep vision models with task-aligned concept representations.
arXiv Detail & Related papers (2024-01-09T16:16:16Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
Large Language Models (LLMs) have achieved unprecedented breakthroughs in various natural language processing domains.
The enigmatic black-box'' nature of LLMs remains a significant challenge for interpretability, hampering transparent and accountable applications.
We propose a novel methodology anchored in sparsity-guided techniques, aiming to provide a holistic interpretation of LLMs.
arXiv Detail & Related papers (2023-12-22T19:55:58Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Learning to Receive Help: Intervention-Aware Concept Embedding Models [44.1307928713715]
Concept Bottleneck Models (CBMs) tackle the opacity of neural architectures by constructing and explaining their predictions using a set of high-level concepts.
Recent work has shown that intervention efficacy can be highly dependent on the order in which concepts are intervened.
We propose Intervention-aware Concept Embedding models (IntCEMs), a novel CBM-based architecture and training paradigm that improves a model's receptiveness to test-time interventions.
arXiv Detail & Related papers (2023-09-29T02:04:24Z) - Concept-Centric Transformers: Enhancing Model Interpretability through
Object-Centric Concept Learning within a Shared Global Workspace [1.6574413179773757]
Concept-Centric Transformers is a simple yet effective configuration of the shared global workspace for interpretability.
We show that our model achieves better classification accuracy than all baselines across all problems.
arXiv Detail & Related papers (2023-05-25T06:37:39Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
Generalized compositional zero-shot learning means to learn composed concepts of attribute-object pairs in a zero-shot fashion.
This paper introduces a new approach, termed translational concept embedding, to solve these two difficulties in a unified framework.
arXiv Detail & Related papers (2021-12-20T21:27:51Z) - Interpretable Visual Reasoning via Induced Symbolic Space [75.95241948390472]
We study the problem of concept induction in visual reasoning, i.e., identifying concepts and their hierarchical relationships from question-answer pairs associated with images.
We first design a new framework named object-centric compositional attention model (OCCAM) to perform the visual reasoning task with object-level visual features.
We then come up with a method to induce concepts of objects and relations using clues from the attention patterns between objects' visual features and question words.
arXiv Detail & Related papers (2020-11-23T18:21:49Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images.
In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner.
We propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights.
arXiv Detail & Related papers (2020-07-13T18:05:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.