Integrating Inverse and Forward Modeling for Sparse Temporal Data from Sensor Networks
- URL: http://arxiv.org/abs/2502.13638v1
- Date: Wed, 19 Feb 2025 11:24:51 GMT
- Title: Integrating Inverse and Forward Modeling for Sparse Temporal Data from Sensor Networks
- Authors: Julian Vexler, Björn Vieten, Martin Nelke, Stefan Kramer,
- Abstract summary: We present CavePerception, a framework for the analysis of sparse data from sensor networks.
We aim to improve the interpretability of sparse, noisy, and potentially incomplete sensor data.
- Score: 2.4280350854512673
- License:
- Abstract: We present CavePerception, a framework for the analysis of sparse data from sensor networks that incorporates elements of inverse modeling and forward modeling. By integrating machine learning with physical modeling in a hypotheses space, we aim to improve the interpretability of sparse, noisy, and potentially incomplete sensor data. The framework assumes data from a two-dimensional sensor network laid out in a graph structure that detects certain objects, with certain motion patterns. Examples of such sensors are magnetometers. Given knowledge about the objects and the way they act on the sensors, one can develop a data generator that produces data from simulated motions of the objects across the sensor field. The framework uses the simulated data to infer object behaviors across the sensor network. The approach is experimentally tested on real-world data, where magnetometers are used on an airport to detect and identify aircraft motions. Experiments demonstrate the value of integrating inverse and forward modeling, enabling intelligent systems to better understand and predict complex, sensor-driven events.
Related papers
- A Plug-in Tiny AI Module for Intelligent and Selective Sensor Data
Transmission [10.174575604689391]
We propose a novel sensing module to equip sensing frameworks with intelligent data transmission capabilities.
We integrate a highly efficient machine learning model placed near the sensor.
This model provides prompt feedback for the sensing system to transmit only valuable data while discarding irrelevant information.
arXiv Detail & Related papers (2024-02-03T05:41:39Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Data-Induced Interactions of Sparse Sensors [3.050919759387984]
We take a thermodynamic view to compute the full landscape of sensor interactions induced by the training data.
Mapping out these data-induced sensor interactions allows combining them with external selection criteria and anticipating sensor replacement impacts.
arXiv Detail & Related papers (2023-07-21T18:13:37Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - On the Importance of Accurate Geometry Data for Dense 3D Vision Tasks [61.74608497496841]
Training on inaccurate or corrupt data induces model bias and hampers generalisation capabilities.
This paper investigates the effect of sensor errors for the dense 3D vision tasks of depth estimation and reconstruction.
arXiv Detail & Related papers (2023-03-26T22:32:44Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - Dynamic Modeling of Hand-Object Interactions via Tactile Sensing [133.52375730875696]
In this work, we employ a high-resolution tactile glove to perform four different interactive activities on a diversified set of objects.
We build our model on a cross-modal learning framework and generate the labels using a visual processing pipeline to supervise the tactile model.
This work takes a step on dynamics modeling in hand-object interactions from dense tactile sensing.
arXiv Detail & Related papers (2021-09-09T16:04:14Z) - On the Role of Sensor Fusion for Object Detection in Future Vehicular
Networks [25.838878314196375]
We evaluate how using a combination of different sensors affects the detection of the environment in which the vehicles move and operate.
The final objective is to identify the optimal setup that would minimize the amount of data to be distributed over the channel.
arXiv Detail & Related papers (2021-04-23T18:58:37Z) - Yet it moves: Learning from Generic Motions to Generate IMU data from
YouTube videos [5.008235182488304]
We show how we can train a regression model on generic motions for both accelerometer and gyro signals to generate synthetic IMU data.
We demonstrate that systems trained on simulated data generated by our regression model can come to within around 10% of the mean F1 score of a system trained on real sensor data.
arXiv Detail & Related papers (2020-11-23T18:16:46Z) - Data-Driven Distributed State Estimation and Behavior Modeling in Sensor
Networks [5.817715558396024]
We formulate the problem of simultaneous state estimation and behavior learning in a sensor network.
We propose a simple yet effective solution by extending the Gaussian process-based Bayes filters (GP-BayesFilters) to an online, distributed setting.
The effectiveness of the proposed method is evaluated on tracking objects with unknown movement behaviors using both synthetic data and data collected from a multi-robot platform.
arXiv Detail & Related papers (2020-09-22T21:31:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.