Synth It Like KITTI: Synthetic Data Generation for Object Detection in Driving Scenarios
- URL: http://arxiv.org/abs/2502.15076v1
- Date: Thu, 20 Feb 2025 22:27:42 GMT
- Title: Synth It Like KITTI: Synthetic Data Generation for Object Detection in Driving Scenarios
- Authors: Richard Marcus, Christian Vogel, Inga Jatzkowski, Niklas Knoop, Marc Stamminger,
- Abstract summary: We propose a dataset generation pipeline based on the CARLA simulator for 3D object detection on LiDAR point clouds.<n>We are able to train an object detector on the synthetic data and demonstrate strong generalization capabilities to the KITTI dataset.
- Score: 3.30184292168618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An important factor in advancing autonomous driving systems is simulation. Yet, there is rather small progress for transferability between the virtual and real world. We revisit this problem for 3D object detection on LiDAR point clouds and propose a dataset generation pipeline based on the CARLA simulator. Utilizing domain randomization strategies and careful modeling, we are able to train an object detector on the synthetic data and demonstrate strong generalization capabilities to the KITTI dataset. Furthermore, we compare different virtual sensor variants to gather insights, which sensor attributes can be responsible for the prevalent domain gap. Finally, fine-tuning with a small portion of real data almost matches the baseline and with the full training set slightly surpasses it.
Related papers
- Combined Physics and Event Camera Simulator for Slip Detection [11.309936820480111]
This paper presents a simulation pipeline for generating slip data using the described camera-gripper configuration in a robot arm.
It provides the ability to alter the setup at any time, simplify the process of repetition and the generation of arbitrarily large data sets.
arXiv Detail & Related papers (2025-03-05T14:50:21Z) - Augmented Reality based Simulated Data (ARSim) with multi-view consistency for AV perception networks [47.07188762367792]
We present ARSim, a framework designed to enhance real multi-view image data with 3D synthetic objects of interest.
We construct a simplified virtual scene using real data and strategically place 3D synthetic assets within it.
The resulting augmented multi-view consistent dataset is used to train a multi-camera perception network for autonomous vehicles.
arXiv Detail & Related papers (2024-03-22T17:49:11Z) - Development of a Realistic Crowd Simulation Environment for Fine-grained
Validation of People Tracking Methods [0.7223361655030193]
This work develops an extension of crowd simulation (named CrowdSim2) and prove its usability in the application of people-tracking algorithms.
The simulator is developed using the very popular Unity 3D engine with particular emphasis on the aspects of realism in the environment.
Three methods of tracking were used to validate generated dataset: IOU-Tracker, Deep-Sort, and Deep-TAMA.
arXiv Detail & Related papers (2023-04-26T09:29:58Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
Deep learning in computer vision has achieved great success with the price of large-scale labeled training data.
The uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist.
To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization.
arXiv Detail & Related papers (2023-03-16T09:03:52Z) - Quantifying the LiDAR Sim-to-Real Domain Shift: A Detailed Investigation
Using Object Detectors and Analyzing Point Clouds at Target-Level [1.1999555634662635]
LiDAR object detection algorithms based on neural networks for autonomous driving require large amounts of data for training, validation, and testing.
We show that using simulated data for the training of neural networks leads to a domain shift of training and testing data due to differences in scenes, scenarios, and distributions.
arXiv Detail & Related papers (2023-03-03T12:52:01Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation [111.56730703473411]
Training deep neural networks (DNNs) on LiDAR data requires large-scale point-wise annotations.
Simulation-to-real domain adaptation (SRDA) trains a DNN using unlimited synthetic data with automatically generated labels.
ePointDA consists of three modules: self-supervised dropout noise rendering, statistics-invariant and spatially-adaptive feature alignment, and transferable segmentation learning.
arXiv Detail & Related papers (2020-09-07T23:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.