Is This Collection Worth My LLM's Time? Automatically Measuring Information Potential in Text Corpora
- URL: http://arxiv.org/abs/2502.13691v1
- Date: Wed, 19 Feb 2025 13:03:06 GMT
- Title: Is This Collection Worth My LLM's Time? Automatically Measuring Information Potential in Text Corpora
- Authors: Tristan Karch, Luca Engel, Philippe Schwaller, Frédéric Kaplan,
- Abstract summary: We present an automated pipeline that evaluates the potential information gain from text collections without requiring model training or fine-tuning.
Our method generates multiple choice questions (MCQs) from texts and measures an LLM's performance both with and without access to the source material.
Our results demonstrate that this method effectively identifies collections containing valuable novel information, providing a practical tool for prioritizing data acquisition and integration efforts.
- Score: 2.3251886193174114
- License:
- Abstract: As large language models (LLMs) converge towards similar capabilities, the key to advancing their performance lies in identifying and incorporating valuable new information sources. However, evaluating which text collections are worth the substantial investment required for digitization, preprocessing, and integration into LLM systems remains a significant challenge. We present a novel approach to this challenge: an automated pipeline that evaluates the potential information gain from text collections without requiring model training or fine-tuning. Our method generates multiple choice questions (MCQs) from texts and measures an LLM's performance both with and without access to the source material. The performance gap between these conditions serves as a proxy for the collection's information potential. We validate our approach using three strategically selected datasets: EPFL PhD manuscripts (likely containing novel specialized knowledge), Wikipedia articles (presumably part of training data), and a synthetic baseline dataset. Our results demonstrate that this method effectively identifies collections containing valuable novel information, providing a practical tool for prioritizing data acquisition and integration efforts.
Related papers
- Hidden Entity Detection from GitHub Leveraging Large Language Models [5.774655701780098]
Large Language Models (LLMs) have paved the way towards approaches that rely on zero-shot learning (ZSL) or few-shot learning (FSL)
This paper investigates the potential of leveraging LLMs to automatically detect datasets and software within textual content from GitHub repositories.
arXiv Detail & Related papers (2025-01-08T12:18:11Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Integrating Planning into Single-Turn Long-Form Text Generation [66.08871753377055]
We propose to use planning to generate long form content.
Our main novelty lies in a single auxiliary task that does not require multiple rounds of prompting or planning.
Our experiments demonstrate on two datasets from different domains, that LLMs fine-tuned with the auxiliary task generate higher quality documents.
arXiv Detail & Related papers (2024-10-08T17:02:40Z) - Scaling Up Summarization: Leveraging Large Language Models for Long Text Extractive Summarization [0.27624021966289597]
This paper introduces EYEGLAXS, a framework that leverages Large Language Models (LLMs) for extractive summarization.
EYEGLAXS focuses on extractive summarization to ensure factual and grammatical integrity.
The system sets new performance benchmarks on well-known datasets like PubMed and ArXiv.
arXiv Detail & Related papers (2024-08-28T13:52:19Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and hallucinations.
Here, we introduce AvaTaR, a novel and automated framework that optimize an LLM agent to effectively leverage provided tools, improving performance on a given task.
arXiv Detail & Related papers (2024-06-17T04:20:02Z) - Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction [36.915250638481986]
We introduce LiveSum, a new benchmark dataset for generating summary tables of competitions based on real-time commentary texts.
We evaluate the performances of state-of-the-art Large Language Models on this task in both fine-tuning and zero-shot settings.
We additionally propose a novel pipeline called $T3$(Text-Tuple-Table) to improve their performances.
arXiv Detail & Related papers (2024-04-22T14:31:28Z) - All Data on the Table: Novel Dataset and Benchmark for Cross-Modality
Scientific Information Extraction [39.05577374775964]
We propose a semi-supervised pipeline for annotating entities in text, as well as entities and relations in tables, in an iterative procedure.
We release novel resources for the scientific community, including a high-quality benchmark, a large-scale corpus, and a semi-supervised annotation pipeline.
arXiv Detail & Related papers (2023-11-14T14:22:47Z) - Utilising a Large Language Model to Annotate Subject Metadata: A Case
Study in an Australian National Research Data Catalogue [18.325675189960833]
In support of open and reproducible research, there has been a rapidly increasing number of datasets made available for research.
As the availability of datasets increases, it becomes more important to have quality metadata for discovering and reusing them.
This paper proposes to leverage large language models (LLMs) for cost-effective annotation of subject metadata through the LLM-based in-context learning.
arXiv Detail & Related papers (2023-10-17T14:52:33Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
A key innovation is our use of explanations as features, which can be used to boost GNN performance on downstream tasks.
Our method achieves state-of-the-art results on well-established TAG datasets.
Our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv.
arXiv Detail & Related papers (2023-05-31T03:18:03Z) - Single-Modal Entropy based Active Learning for Visual Question Answering [75.1682163844354]
We address Active Learning in the multi-modal setting of Visual Question Answering (VQA)
In light of the multi-modal inputs, image and question, we propose a novel method for effective sample acquisition.
Our novel idea is simple to implement, cost-efficient, and readily adaptable to other multi-modal tasks.
arXiv Detail & Related papers (2021-10-21T05:38:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.